For a function, usually sign of second derivative (and if it is zero, even/odd index of higher order derivative whose numerical value is zero) is enough to detect whether the extreme point is maximum/minimum/saddle point, if first derivative is zero. For a functional (NOT A FUNCTION), Euler-Lagrange equation plays the role of first "derivative" of Functional. However, it the RHS of Euler-Lagrange equation is set to zero and the resultant differential equation is solved, then how to find whether this function (as solution to differential equation) corresponds to minimum, maximum or saddle "point" of functional?

Unfortunately, the nature of extremum of a functional is usually declared to be "beyond the scope" of most preliminary/introductory functional analysis resources (I have not checked all). How difficult is that mathematics and what are the prerequisites to understand the mathematics involved in finding the nature of functional extremum?

Please note my knowledge on variational calculus, integral equations and transformations as well as group theory and advanced differential geometry is rudimentary.

More Sumit Bhowmick's questions See All
Similar questions and discussions