We assume that the difference is huge and that it is not possible to compare the two spaces.
The R^4 mathematical space considers time as an external controller and the space itself is immobile in its description or definition in the face of curl and divergence operators.
On the other hand, the unit space 4 D x-t time t is woven into the 3D geometric space as a dimensionless integer.
Here, the curl and divergence operators are just extensions of their original definitions in 3D geometric space.