Actually I know this effect, but I dont know how to explain in proper way with basic physics. Another problem is how to compare this metal nanoparticle effect in bulk metal.
[1] S. R. Bull, "Renewable energy today and tomorrow," Proceedings of the IEEE , vol. 89, n.8, pp. 1216-1226, Aug 2001.
[2] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, “Photovoltaic technology: the case for thin-film solar cells.” Science 285(5428), 692-698 (1999).
[3] Thin Film Solar Cells: Fabrication, Characterization and Applications, Edit by Jef Poortmans, Vladimir Arkhipov Wiley (2006).
[4] Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N.; Yamanishi, T.; Takahama, T.; Taguchi, M.; Maruyama, E.; Okamoto, S., "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," Photovoltaics, IEEE Journal of , vol.4, no.6, pp.1433,1435, Nov. 2014.
[5] H. Fujiwara and M. Kondo, “Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells,” J. Appl. Phys., vol. 101, p. 054516, 2007.
[6] Zayats, Anatoly V., Igor I. Smolyaninov, and Alexei A. Maradudin. "Nano-optics of surface plasmon polaritons." Physics reports 408.3 (2005): 131-314.
[7] Sarid, Dror. "Long-range surface-plasma waves on very thin metal films." Physical Review Letters 47.26 (1981).
[8] Inoue, T.; Watanabe, K.; Toprasertpong, K.; Fujii, H.; Sugiyama, M.; Nakano, Y., "Enhanced Light Trapping in Multiple Quantum Wells by Thin-Film Structure and Backside Grooves With Dielectric Interface," Photovoltaics, IEEE Journal of , vol.5, no.2, pp.697,703, March 2015
[9] Hairen Tan; Santbergen, R.; Guangtao Yang; Smets, A.H.M.; Zeman,M., "Combined Optical and Electrical Design of Plasmonic Back Reflector for High-Efficiency Thin-Film Silicon Solar Cells," Photovoltaics, IEEE Journal of , vol.3, no.1, pp.53,58, Jan. 2013.
[10] V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwr, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett., vol. 95, p. 183503, 2009.
[11] S. A. Maier, Plasmonic: Fundamentals and Applications, Springer (2007).
[12] T. Neumann, M. L. Johansson, D. Kambhampati, W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Advanced Functional Materials, 12(9), pp. 575-586.
[13] A. Polman,“A silicon- based electrical source of surface plasmon polaritons.” Nature Materials, 9(3), 2125 (2010).
[14] S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells”, JOURNAL OF APPLIED PHYSICS 101, 093105, (2007).
[15] A. Atwater, H. and A. Polman. "Plasmonics for improved photovoltaic devices." Nature materials 9.3 (2010): 205-213.
[16] K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett., vol. 93, pp. 191113-1–191113-2, 2008.
[17] W. Bai, Q. Gan, F. Bartoli, and G. Song, “Plasmonic back structures designed for efficiency enhancement of thin film solar cells,” presented at the Conf. Lasers Electro-Opt., San Jose, CA, USA, 2010, Paper CMAA2.
[18] S. Lombardo, et al. "Plasmonic effects of ultra-thin Mo films on hydrogenated amorphous Si photovoltaic cells." Applied Physics Letters 101.12 (2012): 123902-123902.
[19] Wook Jun Nam; Liming Ji; Varadan, V.V.; Fonash, S.J., "Designing optical path length, photonic, and plasmonic effects into nanostructured solar cells," Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on , vol., no., pp.1409,1412, 15-18 Aug. 2011.
[20] Wenli Bai; Qiaoqiang Gan; Guofeng Song; Bartoli, F., "Plasmonic back structures designed for efficiency enhancement of thin film solar cells," Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on , vol., no., pp.1,2, 16-21 May 2010
[21] F. Bonanno, G. Capizzi, G. Lo Sciuto, C. Napoli, G. Pappalardo and E. Tramontana, “A Cascade Neural Network Architecture investigating Surface Plasmon Polaritons propagation for thin metals in OpenMP,” in Artificial Intelligence and Soft Computing, LNAI (Book 8467) series. Springer, 2014, pp. 21–32.
[22] M. M. Gupta, L. Jin, N. Homma: Static and Dynamic Neural Networks. Wiley, New York (2003).
[23] Fallahpour, A.H.; Ulisse, G.; Auf der Maur, M.; Di Carlo, A.; Brunetti, F., "3-D Simulation and Optimization of Organic Solar Cell With Periodic Back Contact Grating Electrode," Photovoltaics, IEEE Journal of , vol.5, no.2, pp.591,596, March 2015
[24] Murthy, M.S.; Tembhurne, S.; Ganguly, S., "Co-optimizing plasmonic and solar cell structures," Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on , vol., no., pp.1,4, 20-23 Aug. 2012.
[25] G. Capizzi, C. Napoli, and F. Bonanno, “Innovative second generation wavelets construction with recurrent neural networks for solar radiation forecasting,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 11, pp. 1805–1815, 2012.
[26] C. Napoli, F. Bonanno, and G. Capizzi, “An hybrid neuro-wavelet approach for long-term prediction of solar wind,” in IAU Symposium no. 274, Cambridge Univ Press, pp. 247–249, (2010).