Some statements in Literature (Jennings et al., 2005; 2006; 2007) suggest the possibility that the second law of thermodynamics might stand in contradiction to the primary photochemistry of plants. Such an opinion seems to be rather challenging, if not to say wrong.

The necessary rise of the overall entropy when a plant grows is correlated with dissipation of energy into the environment. If a system absorbs photons and then relaxes to a final state emitting more photons than previously absorbed (in particular the production of phonons or any bosons fullfills the necessary increase of entropy) then the final state can be of lower entropy than the initial state in full accordance to the second law of thermodynamics because the environment has taken up entropy. I am currently searching for a quantitative analysis of this problem.I know (Lavergne, 2006) however the final discussion does not seem to be completely finished.

Jennings R.C., Engelmann E., Garlaschi F., Casazza A.P., Zucchelli G. Photosynthesis and negative entropy production, Biochim. Biophys. Acta, 2005, Vol. 1709, p. 251.

Jennings R.C., Casazza A.P., Belgio E., Garlaschi F.M., Zucchelli G. Reply to commentary on: Photosynthesis and negative entropy production, Biochim. Biophys. Acta, 2006, Vol. 1757, p. 1460.

Jennings R.C., Belgio E., Casazza A.P.,Garlaschi F.M., Zucchelli G. Entropy consumption in primary photosynthesis, Biochim. Biophys. Acta, 2007, Vol. 1767, p. 1194 Lavergne J. Commentary on: Photosynthesis and negative entropy production by Jennings and coworkers, Biochim. Biophys. Acta, 2006, Vol. 1757, p. 1453.

More Franz-Josef Schmitt's questions See All
Similar questions and discussions