I have i have I havea dataset likethat :
users T1 T2 … Tn
1 [1,2,1.5] [1,3,3] … [2,2,6]
2 [1,5,1.5] [1,3,4] … [2,8,6]
.
n [1,5,7.5] [5,3,4] … [2,9,6]
Given that lists are distinct incident change by time.
My aim to find distinct incidents which might happen to users by time.
I thought of feeding the full dataset to clustering algorithms , but I need an advice from you about best algorithms to fit such 2D dataset or best approach to follow in solving this problem