Greetings,
I am currently in the process of conducting a Confirmatory Factor Analysis (CFA) on a dataset consisting of 658 observations, using a 4-point Likert scale. As I delve into this analysis, I have encountered an interesting dilemma related to the choice of estimation method.
Upon examining my data, I observed a slight negative kurtosis of approximately -0.0492 and a slight negative skewness of approximately -0.243 (please refer to the attached file for details). Considering these properties, I initially leaned towards utilizing the Diagonally Weighted Least Squares (DWLS) estimation method, as existing literature suggests that it takes into account the non-normal distribution of observed variables and is less sensitive to outliers.
However, to my surprise, when I applied the Unweighted Least Squares (ULS) estimation method, it yielded significantly better fit indices for all three factor solutions I am testing. In fact, it even produced a solution that seemed to align with the feedback provided by the respondents. In contrast, DWLS showed no acceptable fit for this specific solution, leaving me to question whether the assumptions of ULS are being violated.
In my quest for guidance, I came across a paper authored by Forero et al. (2009; DOI: 10.1080/10705510903203573), which suggests that if ULS provides a better fit, it may be a valid choice. However, I remain uncertain about the potential violations of assumptions associated with ULS.
I would greatly appreciate your insights, opinions, and suggestions regarding this predicament, as well as any relevant literature or references that can shed light on the suitability of ULS in this context.
Thank you in advance for your valuable contributions to this discussion.
Best regards, Matyas