Cerebrovascular dysfunction contributes to cognitive decline and neurodegeneration in Alzheimer's disease (AD). Vascular endothelial growth factor (VEGF), an angiogenic protein with important neurotrophic and neuroprotective actions, is under investigation as a therapeutic agent for the treatment of neurodegenerative disorders. The aim of this study was to generate encapsulated VEGF-secreting cells and implant them in a transgenic mouse model of AD, the double mutant amyloid precursor protein/presenilin 1 (APP/Ps1) mice, which shows a disturbed vessel homeostasis. We report that, after implantation of VEGF microcapsules, brain Abeta burden, hyperphosphorylated-tau and cognitive impairment attenuated in APP/Ps1 mice. Based on the neurovascular hypothesis, our findings suggest a new potential therapeutic approach that could be developed for AD, to enhance Abeta clearance and neurovascular repair, and to protect the cognitive behavior. Stereologically-implanted encapsulated VEGF-secreting cells could offer an alternative strategy in the treatment of AD
Biomaterials. 2010 Jul;31(21):5608-5611