I am looking for suggestions for analyses that can compare of different taxa in terms of the relative difference in composition among sites.

I have 4 parallel datasets of species abundance data from 4 different taxa sampled in the same sites (n=12).

Each site was sampled between 4 - 10 times.  Usually (not always) sampling was done at the same time for all taxa within a site, but not all sites were sampled at the same time so the data are unbalanced.

I can create balanced subsets if needed but this would severely truncate the data.

I've heard of co-correspondence analysis, co-inertia anlaysis, and possibly multiple-factor analysis as potential candidates for doing this type of comparison but I'm not sure about the differences or which is most appropriate. 

Are there pros and cons/restrictions/assumptions for each of these? 

Is there an alternative method that I have mentioned that would be better? 

Also what do these analyses allow me to test exactly - is their intention is to be able say for example that taxa A and B had high correlation in terms of variation in composition across sites, while taxa C showed low correlation with any other taxa ...etc  ? 

Thanks

Tania

More Tania L F Bird's questions See All
Similar questions and discussions