This discussion questions the conventional explanation of gravitational lensing as a result of spacetime curvature. Instead, it explores an alternative view, proposing that gravitational lensing arises from momentum exchange between photons and external gravitational fields. By analysing the symmetrical behaviour of photons, such as their energy gain (blueshift) and loss (redshift) around massive objects, this perspective challenges general relativity and opens the door to quantum gravity and flat spacetime models. The discussion aims to refine our theoretical understanding of how light and gravity truly interact.

Conceptual Foundation of the Discussion:

A photon, representing light, carries inherent energy denoted as E. As the photon ascends from the gravitational well of its emission source, it loses part of this energy, resulting in a redshift (increase in wavelength, Δλ>0). However, the photon’s behaviour changes significantly when it encounters a strong external gravitational field.

As the photon approaches a strong gravitational body, it undergoes a blueshift (decrease in wavelength, Δλ

More Soumendra Nath Thakur's questions See All
Similar questions and discussions