EDIT: Please see below for the edited version of this question first (02.04.22)
Hi,
I am searching for a reliable normalization method. I have two chip-seq datas to be compared with t-test but the rpkm values are biased. So I need to fix this before the t-test. For instance, when a value is high, it doesn't mean it is high in reality. There can be another factor to see this value is high. In reality, I should see a value closer to mean. Likewise, if a value is low and the factor is strong, we can say that's the reason why we see the low value. We should have seen value much closer to the mean. In brief, what I want is to eliminate the effect of this factor.
In line with this purpose, I have another data showing how strong this factor is for each value in the chip-seq datas (with again RPKM values). Should I simply divide my rpkm values by the corresponding RPKM to get unbiased data? Or is it better to divide rpkm values by the ratio of RPKM/ Mean(RPKMs) ?
Do you have any other suggestions? How should I eliminate the factor?