Hi.

I used PCA to extract the principal components of a set of 5 variables. The eigenvalue of the first component is 1.98, and for the second is 0.98. So I retain the first PC (because it is >1). The loadings matrix (prcomp.object$rotation) is:

Standard deviations:

[1] 1.8964529 0.9809027 0.5126452 0.4047367 0.1211575

Rotation:

                              PC1             PC2             PC3              PC4                 PC5

v1                0.4854578  -0.1426120  -0.3791216   -0.7605055   -0.14795533

v2               -0.4461265  -0.3337826  -0.8067325    0.1899892   -0.05144943

v3               -0.3395503  -0.7385043   0.3986846   -0.3292091    0.26830763

v4               -0.4364794   0.5355879  -0.1179392   -0.4308451    0.56841368

v5               -0.5094048   0.1897576   0.1805279   -0.3025383    0.76182615

It strikes me a bit that the loadings of all the variables in PC1 (the only component to be retained) are quite low (

More David Villegas-Ríos's questions See All
Similar questions and discussions