Hi.
I used PCA to extract the principal components of a set of 5 variables. The eigenvalue of the first component is 1.98, and for the second is 0.98. So I retain the first PC (because it is >1). The loadings matrix (prcomp.object$rotation) is:
Standard deviations:
[1] 1.8964529 0.9809027 0.5126452 0.4047367 0.1211575
Rotation:
PC1 PC2 PC3 PC4 PC5
v1 0.4854578 -0.1426120 -0.3791216 -0.7605055 -0.14795533
v2 -0.4461265 -0.3337826 -0.8067325 0.1899892 -0.05144943
v3 -0.3395503 -0.7385043 0.3986846 -0.3292091 0.26830763
v4 -0.4364794 0.5355879 -0.1179392 -0.4308451 0.56841368
v5 -0.5094048 0.1897576 0.1805279 -0.3025383 0.76182615
It strikes me a bit that the loadings of all the variables in PC1 (the only component to be retained) are quite low (