For example consider the following question:
1.Let $\mathbb{B}^m$ be hyperbolic space and let $f
: \mathbb{B}^m \rightarrow \mathbb{B}^m$ be harmonic $K$-qc map.
Whether $f$ has critical points on $\mathbb{B}^m$ ?
2. Whether injective euclidean-harmonic map has critical points?
3. Suppose that $G \subset \mathbb{R}^n$ is a proper
subdomain, $f :G\rightarrow \mathbb{R}^n$ is harmonic $K$-qc and
$G'=f(G)$. Determine whether $f$ is a quasi-isometry (ie. bi-Lipschitz)
w.r.t. quasihyperbolic metrics on $G$ and $G'$.