For example consider the following question:

1.Let $\mathbb{B}^m$ be hyperbolic space and let $f

: \mathbb{B}^m \rightarrow \mathbb{B}^m$ be harmonic $K$-qc map.

Whether $f$ has critical points on $\mathbb{B}^m$ ?

2.  Whether injective euclidean-harmonic map has critical points?

3. Suppose that $G \subset \mathbb{R}^n$ is a proper

subdomain, $f :G\rightarrow \mathbb{R}^n$ is harmonic $K$-qc and

$G'=f(G)$. Determine whether $f$ is a quasi-isometry (ie. bi-Lipschitz)

w.r.t. quasihyperbolic metrics on $G$ and $G'$.

More Miodrag Mateljević's questions See All
Similar questions and discussions