Let $\mathbb{H}^n$ denote the half-space in

$\mathbb{R}^n$. If $D$ is a domain in $\mathbb{R}^n$, by

$QCH(D)$ we denote the set of Euclidean harmonic quasiconformal

mappings of $D$ onto itself.  In   Revue Roum. Math.

Pures Appl. Vol. {\bf 51} (2006) 5--6, 711--722, we proved

\begin{thm}\label{th.som}

If $h\in QCH (\mathbb{H}^n)$ and $h(\infty)=

\infty$, then $h$ is euclidean bi-Lipschitz and quasi-isometry

with respect to the $Poincar\acute{e}$ distance.

\end{thm}

We now outline a proof of the theorem: \\

Suppose that $n=3$; the same proof works in general. \\

Let

$h=(h^1, h^2, h^3)$. Since $h^3(x)=x_3$, then $h^3_{x_3}(x)=1$,

and therefore $|h'_{x_3}(x)|\geq 1$. In a similar way,

$|g'_{x_3}(x)|\geq 1$, where $g=h^{-1}$. Hence, for a constant

$c=c(K)$,

$$ |h'(x)|\leq c \quad {\rm and} \quad 1/c \leq l(h'(x)),$$ where

$|h'(x)|= \max\limits_{|h|=1} |h'(x)h| $ and $l(h'(x))=

\min\limits_{|h|=1} |h'(x)h|$; and therefore partial derivatives

of $h$ and $h^{-1}$ are bounded from above; and, in particular,

$h$ is euclidean bi-Lipschitz.

Similar questions and discussions