I am looking for informations about interferon-gamma synthesis, especially I was wondering if it could be synthetized by other cells than immune cells.
Regulation of interferon-gamma during innate and adaptive immune responses.
Schoenborn JR1, Wilson CB.
Author information
Abstract
Interferon-gamma (IFN-gamma) is crucial for immunity against intracellular pathogens and for tumor control. However, aberrant IFN-gamma expression has been associated with a number of autoinflammatory and autoimmune diseases. This cytokine is produced predominantly by natural killer (NK) and natural killer T (NKT) cells as part of the innate immune response, and by Th1 CD4 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops. Herein, we briefly review the functions of IFN-gamma, the cells that produce it, the cell extrinsic signals that induce its production and influence the differentiation of naïve T cells into IFN-gamma-producing effector T cells, and the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine. We then review and discuss recent insights regarding the molecular regulation of IFN-gamma, focusing on work that has led to the identification and characterization of distal regulatory elements and epigenetic modifications with the IFN-gamma locus (Ifng) that govern its expression. The epigenetic modifications and three-dimensional structure of the Ifng locus in naive CD4 T cells, and the modifications they undergo as these cells differentiate into effector T cells, suggest a model whereby the chromatin architecture of Ifng is poised to facilitate either rapid opening or silencing during Th1 or Th2 differentiation, respectively.
***
The ability to produce interferon in one degree or another have all the body's cells. The strongest producers of interferon are immunocompetent cells. Interferon system has neither specialized cells, or specific organs, as each cell can be infected by a virus, and must have a recognition system, and elimination of foreign genetic information, i.e. viral nucleic acid. The effect of interferons not specific. Currently in clinical practice uses large amounts of interferon and inducers of interferon preparations which are used as viral infections and in the oncological practice, for the purpose of immunostimulation, as well as in connection with the presence of an anti-proliferative effect (P.F. Zabrodskii. Immunotoxicology of organophosphorus compounds. Saratov . 2016. 289 p. ISBN 978-5-91879-561-3).
Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy.
Ashkar AA1, Di Santo JP, Croy BA.
Author information
Abstract
The dominant lymphocytes in human and murine implantation sites are transient, pregnancy-associated uterine natural killer (uNK) cells. These cells are a major source of interferon (IFN)-gamma. Implantation sites in mice lacking uNK cells (alymphoid recombinase activating gene [RAG]-2(-/)- common cytokine receptor chain gamma [gamma(c)](-/)-) or IFN-gamma signaling (IFN-gamma(-/)- or IFN-gammaRalpha(-/)-) fail to initiate normal pregnancy-induced modification of decidual arteries and display hypocellularity or necrosis of decidua. To investigate the functions of uNK cell-derived IFN-gamma during pregnancy, RAG-2(-/)-gamma(c)(-/)- females were engrafted with bone marrow from IFN-gamma(-/)- mice, IFN-gamma signal-disrupted mice (IFN-gammaRalpha(-/)- or signal transducer and activator of transcription [Stat]-1(-/)-), or from mice able to establish normal uNK cells (severe combined immunodeficient [SCID] or C57BL/6). Mated recipients were analyzed at midgestation. All grafts established uNK cells. Grafts from IFN-gamma(-/)- mice did not reverse host vascular or decidual pathology. Grafts from all other donors promoted modification of decidual arteries and decidual cellularity. Grafts from IFN-gammaRalpha(-/)- or Stat-1(-/)- mice overproduced uNK cells, all of which were immature. Grafts from IFN-gamma(-/)-, SCID, or C57BL/6 mice produced normal, mature uNK cells. Administration of murine recombinant IFN-gamma to pregnant RAG-2(-/)-gamma(c)(-/)- mice initiated decidual vessel modification and promoted decidual cellularity in the absence of uNK cells. These in vivo findings strongly suggest that uNK cell-derived IFN-gamma modifies the expression of genes in the uterine vasculature and stroma, which initiates vessel instability and facilitates pregnancy-induced remodeling of decidual arteries.