I am performing CFD simulation over a NACA 4418 airfoil on Ansys FLUENT and I have collected a data chart of NACA (from 1945) for the purpose of validation.

The Reynolds Number chosen for this CFD simulation is 3,000,000 and the free stream velocity is 45 m/s. Since the simulation for my case is 2D simulation both the characteristics length and area is 1m. The value of y+ considered is 1 and that is ensured by calculating the wall spacing and putting that on First Wall thickness and I have even gone through Report in Ansys FLUENT to check the maximum facet value is below 1. I have used both Spalart Allmaras and K-omega SST Turbulence model. But the following problems are prevalent:

01. For Spalart Allmaras Turbulence model,my lift coefficient is within the range i.e less than 5% difference in between but drag coefficient is way too much high in value sometimes even 200% more

02. For K-omega SST Turbulence model, my lift coefficient is significantly higher in value and as Angle of attack increases this difference gets higher but the highest it gets is below 30% however drag coefficient is also over predicted but in this case the difference is around 50% higher.

I have tried it again for both Turbulence model with a bit more refined mesh but the value of lift coefficient increases in both the cases and but the difference for drag coefficient decreases for K-omega SST Turbulence model

I have been trying this for months now and haven't come to a proper solution. I tried everything at my disposal. Read aerodynamic books and gone through understanding how it is represented on CFD but so far I am not able to find the solution. If anyone can explain it to me what is going on for my case and how can I find a solution for this, that will be really helpful and appreciated.

More Nehal Mahmud Khan's questions See All
Similar questions and discussions