I am trying to optimize an excited state of a molecule as i have to calculate the emission energy ........ The job is running from last six days. My running output is  as:

Entering Gaussian System, Link 0=g09

Input=/home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/3excited_opt_pbepbe_6311G2dp_cpcm.com

Output=/home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/3excited_opt_pbepbe_6311G2dp_cpcm.log

Initial command:

/opt/g09/l1.exe /home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/Gau-34502.inp -scrdir=/home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/

Entering Link 1 = /opt/g09/l1.exe PID= 34504.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011,

Gaussian, Inc. All Rights Reserved.

This is part of the Gaussian(R) 09 program. It is based on

the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),

the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),

the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),

the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),

the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),

the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),

the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon

University), and the Gaussian 82(TM) system (copyright 1983,

Carnegie Mellon University). Gaussian is a federally registered

trademark of Gaussian, Inc.

This software contains proprietary and confidential information,

including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be

used, copied, transmitted, or stored only in accord with that

written license.

The following legend is applicable only to US Government

contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is

subject to restrictions as set forth in subparagraphs (a)

and (c) of the Commercial Computer Software - Restricted

Rights clause in FAR 52.227-19.

Gaussian, Inc.

340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

---------------------------------------------------------------

Warning -- This program may not be used in any manner that

competes with the business of Gaussian, Inc. or will provide

assistance to any competitor of Gaussian, Inc. The licensee

of this program is prohibited from giving any competitor of

Gaussian, Inc. access to this program. By using this program,

the user acknowledges that Gaussian, Inc. is engaged in the

business of creating and licensing software in the field of

computational chemistry and represents and warrants to the

licensee that it is not a competitor of Gaussian, Inc. and that

it will not use this program in any manner prohibited above.

---------------------------------------------------------------

Cite this work as:

Gaussian 09, Revision C.01,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,

G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,

A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,

M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,

J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,

K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,

K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,

M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,

V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,

O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,

R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,

P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,

O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,

and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

******************************************

Gaussian 09: EM64L-G09RevC.01 23-Sep-2011

9-Jan-2016

******************************************

%nprocshared=2

Will use up to 2 processors via shared memory.

%mem=2GB

%chk=3excited_opt_pbepbe_6311G2dp_cpcm.chk

----------------------------------------------------------------------

# opt td=(singlets,nstates=6,root=1) pbepbe/6-311g(2d,p) scrf=(cpcm,so

lvent=acetonitrile) geom=connectivity

----------------------------------------------------------------------

1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3;

2/9=110,12=2,17=6,18=5,40=1/2;

3/5=4,6=6,7=102,11=2,16=1,25=1,30=1,70=2101,71=1,72=2,74=1009/1,2,8,3;

4//1;

5/5=2,38=5,53=2/2;

8/6=1,10=2,107=1,108=6/1;

9/8=1,15=2,41=6,42=1,48=1/14;

10/5=4/2;

6/7=2,8=2,9=2,10=2/1;

7/12=6,13=5,14=1/1,2,3,16;

1/14=-1,18=20,19=15/3(2);

2/9=110/2;

99//99;

2/9=110/2;

3/5=4,6=6,7=102,11=2,16=1,25=1,30=1,70=2105,71=1,72=2,74=1009/1,2,8,3;

4/5=5,16=3/1;

5/5=2,38=5,53=2/2;

8/6=1,10=2,107=1,108=6/1;

9/8=1,15=2,41=6,42=1,48=1,49=4/14;

10/5=4/2;

7/12=6,13=5,14=1/1,2,3,16;

1/14=-1,18=20,19=15/3(-8);

2/9=110/2;

6/7=2,8=2,9=2,10=2/1;

99//99;

---------------------------------

3excited_opt_pbepbe_6311G2dp_cpcm

---------------------------------

Charge = 0 Multiplicity = 1

Symbolic Z-Matrix:

C -0.64851 -1.01072 0.02527

C -0.64559 1.28664 0.04937

C 1.07209 -2.42404 -0.08103

C -0.12129 -3.21366 -0.03644

C -1.22433 -2.3172 0.03726

C -1.22356 2.61818 -0.03166

C 1.06325 2.72769 0.05074

C -0.13984 3.48373 -0.0411

B 1.68675 0.13463 0.12617

N 0.75196 1.39514 0.1174

N 0.74453 -1.10641 -0.06232

N -1.30852 0.14868 0.0438

C -2.66343 -2.5757 0.07775

C -3.51176 -1.78136 0.87869

C -3.25746 -3.58727 -0.70692

C -4.88866 -1.99598 0.8949

H -3.07931 -1.00074 1.50444

C -4.63442 -3.78195 -0.69596

H -2.6292 -4.21177 -1.34051

C -5.47949 -2.99739 0.10946

H -5.51995 -1.37375 1.53491

H -5.06923 -4.56071 -1.3285

C 2.45783 -2.92245 -0.11079

C 2.92341 -3.76916 0.91368

C 3.3343 -2.5972 -1.16152

C 4.22533 -4.26474 0.88753

H 2.26669 -4.01282 1.75138

C 4.62864 -3.11345 -1.1858

H 2.99396 -1.94193 -1.96288

C 5.10054 -3.95456 -0.16587

H 4.57063 -4.90426 1.70394

H 5.29042 -2.85602 -2.01693

H -0.17492 4.56785 -0.09043

C 2.3965 3.3191 0.06625

C 3.50112 2.74237 0.72939

C 2.58922 4.56245 -0.57947

C 4.73515 3.38316 0.73637

H 3.37968 1.80439 1.26847

C 3.83218 5.18442 -0.57896

H 1.76064 5.029 -1.11482

C 4.93316 4.60923 0.07808

H 5.56923 2.92446 1.2738

H 3.95389 6.1379 -1.09892

C -2.63903 2.97377 -0.0755

C -3.04859 4.27441 0.29636

C -3.63613 2.06947 -0.4993

C -4.38653 4.6473 0.24903

H -2.30726 4.99403 0.64979

C -4.97431 2.45435 -0.54439

H -3.34948 1.06283 -0.80137

C -5.38062 3.74506 -0.17107

H -4.67166 5.65928 0.54873

H -5.72418 1.73564 -0.88604

C 6.28284 5.27238 0.06237

H 6.83114 5.0891 0.99728

H 6.90115 4.87263 -0.75881

H 6.19776 6.35706 -0.09045

C 6.49387 -4.52508 -0.2095

H 6.4906 -5.52956 -0.66417

H 7.16682 -3.89633 -0.80878

H 6.91697 -4.62834 0.79982

C -6.96455 -3.24342 0.14275

H -7.50563 -2.38391 0.56177

H -7.35928 -3.44845 -0.86326

H -7.20323 -4.12153 0.76553

C -6.83019 4.14911 -0.19981

H -7.42773 3.4599 -0.81186

H -7.25756 4.14698 0.81668

H -6.95499 5.16756 -0.59627

F 2.61194 0.23952 -0.91133

F 2.33358 -0.00669 1.36665

C -0.08454 -4.67139 -0.03636

H 0.94072 -5.09416 -0.16292

O -1.04694 -5.42641 0.09461

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Berny optimization.

Initialization pass.

----------------------------

! Initial Parameters !

! (Angstroms and Degrees) !

-------------------------- --------------------------

! Name Definition Value Derivative Info. !

--------------------------------------------------------------------------------

! R1 R(1,5) 1.4278 estimate D2E/DX2 !

! R2 R(1,11) 1.3991 estimate D2E/DX2 !

! R3 R(1,12) 1.3342 estimate D2E/DX2 !

! R4 R(2,6) 1.4538 estimate D2E/DX2 !

! R5 R(2,10) 1.4034 estimate D2E/DX2 !

! R6 R(2,12) 1.317 estimate D2E/DX2 !

! R7 R(3,4) 1.4317 estimate D2E/DX2 !

! R8 R(3,11) 1.3579 estimate D2E/DX2 !

! R9 R(3,23) 1.4729 estimate D2E/DX2 !

! R10 R(4,5) 1.4233 estimate D2E/DX2 !

! R11 R(4,72) 1.4582 estimate D2E/DX2 !

! R12 R(5,13) 1.4627 estimate D2E/DX2 !

! R13 R(6,8) 1.387 estimate D2E/DX2 !

! R14 R(6,44) 1.4601 estimate D2E/DX2 !

! R15 R(7,8) 1.4239 estimate D2E/DX2 !

! R16 R(7,10) 1.37 estimate D2E/DX2 !

! R17 R(7,34) 1.4586 estimate D2E/DX2 !

! R18 R(8,33) 1.0858 estimate D2E/DX2 !

! R19 R(9,10) 1.5693 estimate D2E/DX2 !

! R20 R(9,11) 1.5695 estimate D2E/DX2 !

! R21 R(9,70) 1.3941 estimate D2E/DX2 !

! R22 R(9,71) 1.4061 estimate D2E/DX2 !

! R23 R(13,14) 1.4114 estimate D2E/DX2 !

! R24 R(13,15) 1.4113 estimate D2E/DX2 !

! R25 R(14,16) 1.3936 estimate D2E/DX2 !

! R26 R(14,17) 1.0899 estimate D2E/DX2 !

! R27 R(15,18) 1.3907 estimate D2E/DX2 !

! R28 R(15,19) 1.0891 estimate D2E/DX2 !

! R29 R(16,20) 1.4031 estimate D2E/DX2 !

! R30 R(16,21) 1.0933 estimate D2E/DX2 !

! R31 R(18,20) 1.4066 estimate D2E/DX2 !

! R32 R(18,22) 1.0935 estimate D2E/DX2 !

! R33 R(20,62) 1.5057 estimate D2E/DX2 !

! R34 R(23,24) 1.4083 estimate D2E/DX2 !

! R35 R(23,25) 1.4064 estimate D2E/DX2 !

! R36 R(24,26) 1.3933 estimate D2E/DX2 !

! R37 R(24,27) 1.092 estimate D2E/DX2 !

! R38 R(25,28) 1.3937 estimate D2E/DX2 !

! R39 R(25,29) 1.0897 estimate D2E/DX2 !

! R40 R(26,30) 1.4042 estimate D2E/DX2 !

! R41 R(26,31) 1.093 estimate D2E/DX2 !

! R42 R(28,30) 1.4037 estimate D2E/DX2 !

! R43 R(28,32) 1.0932 estimate D2E/DX2 !

! R44 R(30,58) 1.5062 estimate D2E/DX2 !

! R45 R(34,35) 1.4116 estimate D2E/DX2 !

! R46 R(34,36) 1.4142 estimate D2E/DX2 !

! R47 R(35,37) 1.3905 estimate D2E/DX2 !

! R48 R(35,38) 1.0887 estimate D2E/DX2 !

! R49 R(36,39) 1.3899 estimate D2E/DX2 !

! R50 R(36,40) 1.0912 estimate D2E/DX2 !

! R51 R(37,41) 1.4056 estimate D2E/DX2 !

! R52 R(37,42) 1.0931 estimate D2E/DX2 !

! R53 R(39,41) 1.4052 estimate D2E/DX2 !

! R54 R(39,43) 1.0928 estimate D2E/DX2 !

! R55 R(41,54) 1.5039 estimate D2E/DX2 !

! R56 R(44,45) 1.4134 estimate D2E/DX2 !

! R57 R(44,46) 1.4112 estimate D2E/DX2 !

! R58 R(45,47) 1.3897 estimate D2E/DX2 !

! R59 R(45,48) 1.0919 estimate D2E/DX2 !

! R60 R(46,49) 1.3932 estimate D2E/DX2 !

! R61 R(46,50) 1.0894 estimate D2E/DX2 !

! R62 R(47,51) 1.4067 estimate D2E/DX2 !

! R63 R(47,52) 1.0933 estimate D2E/DX2 !

! R64 R(49,51) 1.4037 estimate D2E/DX2 !

! R65 R(49,53) 1.0934 estimate D2E/DX2 !

! R66 R(51,66) 1.5051 estimate D2E/DX2 !

! R67 R(54,55) 1.0992 estimate D2E/DX2 !

! R68 R(54,56) 1.1029 estimate D2E/DX2 !

! R69 R(54,57) 1.0987 estimate D2E/DX2 !

! R70 R(58,59) 1.1026 estimate D2E/DX2 !

! R71 R(58,60) 1.0988 estimate D2E/DX2 !

! R72 R(58,61) 1.0993 estimate D2E/DX2 !

! R73 R(62,63) 1.0987 estimate D2E/DX2 !

! R74 R(62,64) 1.1 estimate D2E/DX2 !

! R75 R(62,65) 1.1027 estimate D2E/DX2 !

! R76 R(66,67) 1.0985 estimate D2E/DX2 !

! R77 R(66,68) 1.1027 estimate D2E/DX2 !

! R78 R(66,69) 1.1 estimate D2E/DX2 !

! R79 R(72,73) 1.1162 estimate D2E/DX2 !

! R80 R(72,74) 1.2302 estimate D2E/DX2 !

! A1 A(5,1,11) 109.8467 estimate D2E/DX2 !

! A2 A(5,1,12) 126.5491 estimate D2E/DX2 !

! A3 A(11,1,12) 123.5626 estimate D2E/DX2 !

! A4 A(6,2,10) 109.1348 estimate D2E/DX2 !

! A5 A(6,2,12) 126.2303 estimate D2E/DX2 !

! A6 A(10,2,12) 124.6296 estimate D2E/DX2 !

! A7 A(4,3,11) 109.4929 estimate D2E/DX2 !

! A8 A(4,3,23) 126.7421 estimate D2E/DX2 !

! A9 A(11,3,23) 123.7504 estimate D2E/DX2 !

! A10 A(3,4,5) 107.4714 estimate D2E/DX2 !

! A11 A(3,4,72) 122.0297 estimate D2E/DX2 !

! A12 A(5,4,72) 130.4798 estimate D2E/DX2 !

! A13 A(1,5,4) 105.2689 estimate D2E/DX2 !

! A14 A(1,5,13) 123.9686 estimate D2E/DX2 !

! A15 A(4,5,13) 130.7384 estimate D2E/DX2 !

! A16 A(2,6,8) 105.1479 estimate D2E/DX2 !

! A17 A(2,6,44) 127.5988 estimate D2E/DX2 !

! A18 A(8,6,44) 127.2485 estimate D2E/DX2 !

! A19 A(8,7,10) 109.1234 estimate D2E/DX2 !

! A20 A(8,7,34) 123.8975 estimate D2E/DX2 !

! A21 A(10,7,34) 126.979 estimate D2E/DX2 !

! A22 A(6,8,7) 109.1713 estimate D2E/DX2 !

! A23 A(6,8,33) 126.7371 estimate D2E/DX2 !

! A24 A(7,8,33) 124.082 estimate D2E/DX2 !

! A25 A(10,9,11) 106.0723 estimate D2E/DX2 !

! A26 A(10,9,70) 109.3128 estimate D2E/DX2 !

! A27 A(10,9,71) 111.0802 estimate D2E/DX2 !

! A28 A(11,9,70) 111.6244 estimate D2E/DX2 !

! A29 A(11,9,71) 107.6156 estimate D2E/DX2 !

! A30 A(70,9,71) 111.0284 estimate D2E/DX2 !

! A31 A(2,10,7) 107.403 estimate D2E/DX2 !

! A32 A(2,10,9) 122.0968 estimate D2E/DX2 !

! A33 A(7,10,9) 130.2533 estimate D2E/DX2 !

! A34 A(1,11,3) 107.9036 estimate D2E/DX2 !

! A35 A(1,11,9) 122.4205 estimate D2E/DX2 !

! A36 A(3,11,9) 128.6171 estimate D2E/DX2 !

! A37 A(1,12,2) 120.1255 estimate D2E/DX2 !

! A38 A(5,13,14) 120.504 estimate D2E/DX2 !

! A39 A(5,13,15) 121.6944 estimate D2E/DX2 !

! A40 A(14,13,15) 117.7683 estimate D2E/DX2 !

! A41 A(13,14,16) 120.9146 estimate D2E/DX2 !

! A42 A(13,14,17) 119.3664 estimate D2E/DX2 !

! A43 A(16,14,17) 119.7113 estimate D2E/DX2 !

! A44 A(13,15,18) 120.8435 estimate D2E/DX2 !

! A45 A(13,15,19) 119.4478 estimate D2E/DX2 !

! A46 A(18,15,19) 119.7014 estimate D2E/DX2 !

! A47 A(14,16,20) 121.2938 estimate D2E/DX2 !

! A48 A(14,16,21) 119.3176 estimate D2E/DX2 !

! A49 A(20,16,21) 119.3883 estimate D2E/DX2 !

! A50 A(15,18,20) 121.42 estimate D2E/DX2 !

! A51 A(15,18,22) 119.2658 estimate D2E/DX2 !

! A52 A(20,18,22) 119.3141 estimate D2E/DX2 !

! A53 A(16,20,18) 117.7514 estimate D2E/DX2 !

! A54 A(16,20,62) 121.3024 estimate D2E/DX2 !

! A55 A(18,20,62) 120.9377 estimate D2E/DX2 !

! A56 A(3,23,24) 119.9852 estimate D2E/DX2 !

! A57 A(3,23,25) 121.5428 estimate D2E/DX2 !

! A58 A(24,23,25) 118.4573 estimate D2E/DX2 !

! A59 A(23,24,26) 120.6051 estimate D2E/DX2 !

! A60 A(23,24,27) 119.5646 estimate D2E/DX2 !

! A61 A(26,24,27) 119.802 estimate D2E/DX2 !

! A62 A(23,25,28) 120.4051 estimate D2E/DX2 !

! A63 A(23,25,29) 119.5942 estimate D2E/DX2 !

! A64 A(28,25,29) 119.9997 estimate D2E/DX2 !

! A65 A(24,26,30) 121.1919 estimate D2E/DX2 !

! A66 A(24,26,31) 119.2928 estimate D2E/DX2 !

! A67 A(30,26,31) 119.5152 estimate D2E/DX2 !

! A68 A(25,28,30) 121.4331 estimate D2E/DX2 !

! A69 A(25,28,32) 119.2253 estimate D2E/DX2 !

! A70 A(30,28,32) 119.3415 estimate D2E/DX2 !

! A71 A(26,30,28) 117.8979 estimate D2E/DX2 !

! A72 A(26,30,58) 120.971 estimate D2E/DX2 !

! A73 A(28,30,58) 121.124 estimate D2E/DX2 !

! A74 A(7,34,35) 123.6846 estimate D2E/DX2 !

! A75 A(7,34,36) 118.436 estimate D2E/DX2 !

! A76 A(35,34,36) 117.8439 estimate D2E/DX2 !

! A77 A(34,35,37) 120.5683 estimate D2E/DX2 !

! A78 A(34,35,38) 119.8258 estimate D2E/DX2 !

! A79 A(37,35,38) 119.5746 estimate D2E/DX2 !

! A80 A(34,36,39) 121.006 estimate D2E/DX2 !

! A81 A(34,36,40) 119.7628 estimate D2E/DX2 !

! A82 A(39,36,40) 119.2018 estimate D2E/DX2 !

! A83 A(35,37,41) 121.6432 estimate D2E/DX2 !

! A84 A(35,37,42) 119.0952 estimate D2E/DX2 !

! A85 A(41,37,42) 119.2601 estimate D2E/DX2 !

! A86 A(36,39,41) 121.1754 estimate D2E/DX2 !

! A87 A(36,39,43) 119.3304 estimate D2E/DX2 !

! A88 A(41,39,43) 119.4942 estimate D2E/DX2 !

! A89 A(37,41,39) 117.7512 estimate D2E/DX2 !

! A90 A(37,41,54) 121.0609 estimate D2E/DX2 !

! A91 A(39,41,54) 121.1827 estimate D2E/DX2 !

! A92 A(6,44,45) 119.8104 estimate D2E/DX2 !

! A93 A(6,44,46) 122.5409 estimate D2E/DX2 !

! A94 A(45,44,46) 117.6413 estimate D2E/DX2 !

! A95 A(44,45,47) 121.1263 estimate D2E/DX2 !

! A96 A(44,45,48) 119.6613 estimate D2E/DX2 !

! A97 A(47,45,48) 119.1965 estimate D2E/DX2 !

! A98 A(44,46,49) 120.7543 estimate D2E/DX2 !

! A99 A(44,46,50) 119.3063 estimate D2E/DX2 !

! A100 A(49,46,50) 119.9374 estimate D2E/DX2 !

! A101 A(45,47,51) 121.2271 estimate D2E/DX2 !

! A102 A(45,47,52) 119.3484 estimate D2E/DX2 !

! A103 A(51,47,52) 119.4238 estimate D2E/DX2 !

! A104 A(46,49,51) 121.564 estimate D2E/DX2 !

! A105 A(46,49,53) 119.1611 estimate D2E/DX2 !

! A106 A(51,49,53) 119.2732 estimate D2E/DX2 !

! A107 A(47,51,49) 117.6865 estimate D2E/DX2 !

! A108 A(47,51,66) 120.9399 estimate D2E/DX2 !

! A109 A(49,51,66) 121.3686 estimate D2E/DX2 !

! A110 A(41,54,55) 111.4232 estimate D2E/DX2 !

! A111 A(41,54,56) 110.5536 estimate D2E/DX2 !

! A112 A(41,54,57) 111.5486 estimate D2E/DX2 !

! A113 A(55,54,56) 107.0482 estimate D2E/DX2 !

! A114 A(55,54,57) 108.756 estimate D2E/DX2 !

! A115 A(56,54,57) 107.3186 estimate D2E/DX2 !

! A116 A(30,58,59) 110.7489 estimate D2E/DX2 !

! A117 A(30,58,60) 111.4442 estimate D2E/DX2 !

! A118 A(30,58,61) 111.4089 estimate D2E/DX2 !

! A119 A(59,58,60) 107.3504 estimate D2E/DX2 !

! A120 A(59,58,61) 107.1091 estimate D2E/DX2 !

! A121 A(60,58,61) 108.5897 estimate D2E/DX2 !

! A122 A(20,62,63) 111.4902 estimate D2E/DX2 !

! A123 A(20,62,64) 111.3573 estimate D2E/DX2 !

! A124 A(20,62,65) 110.8611 estimate D2E/DX2 !

! A125 A(63,62,64) 108.5358 estimate D2E/DX2 !

! A126 A(63,62,65) 107.5172 estimate D2E/DX2 !

! A127 A(64,62,65) 106.8839 estimate D2E/DX2 !

! A128 A(51,66,67) 111.4753 estimate D2E/DX2 !

! A129 A(51,66,68) 110.8029 estimate D2E/DX2 !

! A130 A(51,66,69) 111.3891 estimate D2E/DX2 !

! A131 A(67,66,68) 107.553 estimate D2E/DX2 !

! A132 A(67,66,69) 108.565 estimate D2E/DX2 !

! A133 A(68,66,69) 106.8615 estimate D2E/DX2 !

! A134 A(4,72,73) 113.6897 estimate D2E/DX2 !

! A135 A(4,72,74) 126.4292 estimate D2E/DX2 !

! A136 A(73,72,74) 119.8794 estimate D2E/DX2 !

! D1 D(11,1,5,4) 0.4342 estimate D2E/DX2 !

! D2 D(11,1,5,13) -177.9466 estimate D2E/DX2 !

! D3 D(12,1,5,4) 178.1387 estimate D2E/DX2 !

! D4 D(12,1,5,13) -0.242 estimate D2E/DX2 !

! D5 D(5,1,11,3) -1.115 estimate D2E/DX2 !

! D6 D(5,1,11,9) -170.2759 estimate D2E/DX2 !

! D7 D(12,1,11,3) -178.902 estimate D2E/DX2 !

! D8 D(12,1,11,9) 11.937 estimate D2E/DX2 !

! D9 D(5,1,12,2) 178.9926 estimate D2E/DX2 !

! D10 D(11,1,12,2) -3.5987 estimate D2E/DX2 !

! D11 D(10,2,6,8) 1.3736 estimate D2E/DX2 !

! D12 D(10,2,6,44) -177.8766 estimate D2E/DX2 !

! D13 D(12,2,6,8) -177.8156 estimate D2E/DX2 !

! D14 D(12,2,6,44) 2.9342 estimate D2E/DX2 !

! D15 D(6,2,10,7) -1.3787 estimate D2E/DX2 !

! D16 D(6,2,10,9) -176.2143 estimate D2E/DX2 !

! D17 D(12,2,10,7) 177.8265 estimate D2E/DX2 !

! D18 D(12,2,10,9) 2.9908 estimate D2E/DX2 !

! D19 D(6,2,12,1) 175.0806 estimate D2E/DX2 !

! D20 D(10,2,12,1) -3.9885 estimate D2E/DX2 !

! D21 D(11,3,4,5) -1.0808 estimate D2E/DX2 !

! D22 D(11,3,4,72) -179.6434 estimate D2E/DX2 !

! D23 D(23,3,4,5) 177.5623 estimate D2E/DX2 !

! D24 D(23,3,4,72) -1.0002 estimate D2E/DX2 !

! D25 D(4,3,11,1) 1.3442 estimate D2E/DX2 !

! D26 D(4,3,11,9) 169.6221 estimate D2E/DX2 !

! D27 D(23,3,11,1) -177.3481 estimate D2E/DX2 !

! D28 D(23,3,11,9) -9.0703 estimate D2E/DX2 !

! D29 D(4,3,23,24) -57.0363 estimate D2E/DX2 !

! D30 D(4,3,23,25) 121.5499 estimate D2E/DX2 !

! D31 D(11,3,23,24) 121.4253 estimate D2E/DX2 !

! D32 D(11,3,23,25) -59.9885 estimate D2E/DX2 !

! D33 D(3,4,5,1) 0.3721 estimate D2E/DX2 !

! D34 D(3,4,5,13) 178.5997 estimate D2E/DX2 !

! D35 D(72,4,5,1) 178.77 estimate D2E/DX2 !

! D36 D(72,4,5,13) -3.0024 estimate D2E/DX2 !

! D37 D(3,4,72,73) -5.0108 estimate D2E/DX2 !

! D38 D(3,4,72,74) 174.5022 estimate D2E/DX2 !

! D39 D(5,4,72,73) 176.7919 estimate D2E/DX2 !

! D40 D(5,4,72,74) -3.695 estimate D2E/DX2 !

! D41 D(1,5,13,14) -39.4935 estimate D2E/DX2 !

! D42 D(1,5,13,15) 138.3612 estimate D2E/DX2 !

! D43 D(4,5,13,14) 142.5683 estimate D2E/DX2 !

! D44 D(4,5,13,15) -39.577 estimate D2E/DX2 !

! D45 D(2,6,8,7) -0.8472 estimate D2E/DX2 !

! D46 D(2,6,8,33) -179.754 estimate D2E/DX2 !

! D47 D(44,6,8,7) 178.4065 estimate D2E/DX2 !

! D48 D(44,6,8,33) -0.5003 estimate D2E/DX2 !

! D49 D(2,6,44,45) 158.5947 estimate D2E/DX2 !

! D50 D(2,6,44,46) -22.4161 estimate D2E/DX2 !

! D51 D(8,6,44,45) -20.4962 estimate D2E/DX2 !

! D52 D(8,6,44,46) 158.4931 estimate D2E/DX2 !

! D53 D(10,7,8,6) 0.0291 estimate D2E/DX2 !

! D54 D(10,7,8,33) 178.9714 estimate D2E/DX2 !

! D55 D(34,7,8,6) 179.9483 estimate D2E/DX2 !

! D56 D(34,7,8,33) -1.1095 estimate D2E/DX2 !

! D57 D(8,7,10,2) 0.8415 estimate D2E/DX2 !

! D58 D(8,7,10,9) 175.1072 estimate D2E/DX2 !

! D59 D(34,7,10,2) -179.0745 estimate D2E/DX2 !

! D60 D(34,7,10,9) -4.8088 estimate D2E/DX2 !

! D61 D(8,7,34,35) 150.1623 estimate D2E/DX2 !

! D62 D(8,7,34,36) -27.623 estimate D2E/DX2 !

! D63 D(10,7,34,35) -29.9333 estimate D2E/DX2 !

! D64 D(10,7,34,36) 152.2814 estimate D2E/DX2 !

! D65 D(11,9,10,2) 4.1939 estimate D2E/DX2 !

! D66 D(11,9,10,7) -169.3442 estimate D2E/DX2 !

! D67 D(70,9,10,2) 124.6811 estimate D2E/DX2 !

! D68 D(70,9,10,7) -48.857 estimate D2E/DX2 !

! D69 D(71,9,10,2) -112.4592 estimate D2E/DX2 !

! D70 D(71,9,10,7) 74.0028 estimate D2E/DX2 !

! D71 D(10,9,11,1) -11.0495 estimate D2E/DX2 !

! D72 D(10,9,11,3) -177.8099 estimate D2E/DX2 !

! D73 D(70,9,11,1) -130.0258 estimate D2E/DX2 !

! D74 D(70,9,11,3) 63.2138 estimate D2E/DX2 !

! D75 D(71,9,11,1) 107.9107 estimate D2E/DX2 !

! D76 D(71,9,11,3) -58.8497 estimate D2E/DX2 !

! D77 D(5,13,14,16) 178.1868 estimate D2E/DX2 !

! D78 D(5,13,14,17) -2.8171 estimate D2E/DX2 !

! D79 D(15,13,14,16) 0.2497 estimate D2E/DX2 !

! D80 D(15,13,14,17) 179.2458 estimate D2E/DX2 !

! D81 D(5,13,15,18) -177.351 estimate D2E/DX2 !

! D82 D(5,13,15,19) 1.6629 estimate D2E/DX2 !

! D83 D(14,13,15,18) 0.5601 estimate D2E/DX2 !

! D84 D(14,13,15,19) 179.574 estimate D2E/DX2 !

! D85 D(13,14,16,20) -0.5842 estimate D2E/DX2 !

! D86 D(13,14,16,21) 179.2083 estimate D2E/DX2 !

! D87 D(17,14,16,20) -179.5769 estimate D2E/DX2 !

! D88 D(17,14,16,21) 0.2156 estimate D2E/DX2 !

! D89 D(13,15,18,20) -1.0614 estimate D2E/DX2 !

! D90 D(13,15,18,22) 178.8359 estimate D2E/DX2 !

! D91 D(19,15,18,20) 179.9271 estimate D2E/DX2 !

! D92 D(19,15,18,22) -0.1756 estimate D2E/DX2 !

! D93 D(14,16,20,18) 0.103 estimate D2E/DX2 !

! D94 D(14,16,20,62) 179.0492 estimate D2E/DX2 !

! D95 D(21,16,20,18) -179.6894 estimate D2E/DX2 !

! D96 D(21,16,20,62) -0.7431 estimate D2E/DX2 !

! D97 D(15,18,20,16) 0.7153 estimate D2E/DX2 !

! D98 D(15,18,20,62) -178.235 estimate D2E/DX2 !

! D99 D(22,18,20,16) -179.182 estimate D2E/DX2 !

! D100 D(22,18,20,62) 1.8677 estimate D2E/DX2 !

! D101 D(16,20,62,63) 18.3125 estimate D2E/DX2 !

! D102 D(16,20,62,64) 139.6982 estimate D2E/DX2 !

! D103 D(16,20,62,65) -101.4372 estimate D2E/DX2 !

! D104 D(18,20,62,63) -162.7747 estimate D2E/DX2 !

! D105 D(18,20,62,64) -41.3891 estimate D2E/DX2 !

! D106 D(18,20,62,65) 77.4756 estimate D2E/DX2 !

! D107 D(3,23,24,26) 179.0042 estimate D2E/DX2 !

! D108 D(3,23,24,27) -2.9333 estimate D2E/DX2 !

! D109 D(25,23,24,26) 0.3747 estimate D2E/DX2 !

! D110 D(25,23,24,27) 178.4372 estimate D2E/DX2 !

! D111 D(3,23,25,28) -178.1265 estimate D2E/DX2 !

! D112 D(3,23,25,29) 1.5149 estimate D2E/DX2 !

! D113 D(24,23,25,28) 0.4806 estimate D2E/DX2 !

! D114 D(24,23,25,29) -179.8779 estimate D2E/DX2 !

! D115 D(23,24,26,30) -1.0434 estimate D2E/DX2 !

! D116 D(23,24,26,31) 178.7975 estimate D2E/DX2 !

! D117 D(27,24,26,30) -179.1012 estimate D2E/DX2 !

! D118 D(27,24,26,31) 0.7397 estimate D2E/DX2 !

! D119 D(23,25,28,30) -0.6949 estimate D2E/DX2 !

! D120 D(23,25,28,32) 179.3912 estimate D2E/DX2 !

! D121 D(29,25,28,30) 179.6651 estimate D2E/DX2 !

! D122 D(29,25,28,32) -0.2487 estimate D2E/DX2 !

! D123 D(24,26,30,28) 0.8237 estimate D2E/DX2 !

! D124 D(24,26,30,58) -178.217 estimate D2E/DX2 !

! D125 D(31,26,30,28) -179.0169 estimate D2E/DX2 !

! D126 D(31,26,30,58) 1.9424 estimate D2E/DX2 !

! D127 D(25,28,30,26) 0.0426 estimate D2E/DX2 !

! D128 D(25,28,30,58) 179.0818 estimate D2E/DX2 !

! D129 D(32,28,30,26) 179.9563 estimate D2E/DX2 !

! D130 D(32,28,30,58) -1.0045 estimate D2E/DX2 !

! D131 D(26,30,58,59) 84.5573 estimate D2E/DX2 !

! D132 D(26,30,58,60) -156.0088 estimate D2E/DX2 !

! D133 D(26,30,58,61) -34.5501 estimate D2E/DX2 !

! D134 D(28,30,58,59) -94.4524 estimate D2E/DX2 !

! D135 D(28,30,58,60) 24.9815 estimate D2E/DX2 !

! D136 D(28,30,58,61) 146.4403 estimate D2E/DX2 !

! D137 D(7,34,35,37) -178.0308 estimate D2E/DX2 !

! D138 D(7,34,35,38) -0.0768 estimate D2E/DX2 !

! D139 D(36,34,35,37) -0.2333 estimate D2E/DX2 !

! D140 D(36,34,35,38) 177.7207 estimate D2E/DX2 !

! D141 D(7,34,36,39) 178.9532 estimate D2E/DX2 !

! D142 D(7,34,36,40) -3.0353 estimate D2E/DX2 !

! D143 D(35,34,36,39) 1.0372 estimate D2E/DX2 !

! D144 D(35,34,36,40) 179.0488 estimate D2E/DX2 !

! D145 D(34,35,37,41) -0.7229 estimate D2E/DX2 !

! D146 D(34,35,37,42) 178.8187 estimate D2E/DX2 !

! D147 D(38,35,37,41) -178.682 estimate D2E/DX2 !

! D148 D(38,35,37,42) 0.8596 estimate D2E/DX2 !

! D149 D(34,36,39,41) -0.9069 estimate D2E/DX2 !

! D150 D(34,36,39,43) 179.1131 estimate D2E/DX2 !

! D151 D(40,36,39,41) -178.9294 estimate D2E/DX2 !

! D152 D(40,36,39,43) 1.0906 estimate D2E/DX2 !

! D153 D(35,37,41,39) 0.8628 estimate D2E/DX2 !

! D154 D(35,37,41,54) -178.3152 estimate D2E/DX2 !

! D155 D(42,37,41,39) -178.678 estimate D2E/DX2 !

! D156 D(42,37,41,54) 2.144 estimate D2E/DX2 !

! D157 D(36,39,41,37) -0.0496 estimate D2E/DX2 !

! D158 D(36,39,41,54) 179.1274 estimate D2E/DX2 !

! D159 D(43,39,41,37) 179.9304 estimate D2E/DX2 !

! D160 D(43,39,41,54) -0.8927 estimate D2E/DX2 !

! D161 D(37,41,54,55) -33.8918 estimate D2E/DX2 !

! D162 D(37,41,54,56) 85.0199 estimate D2E/DX2 !

! D163 D(37,41,54,57) -155.6475 estimate D2E/DX2 !

! D164 D(39,41,54,55) 146.9585 estimate D2E/DX2 !

! D165 D(39,41,54,56) -94.1297 estimate D2E/DX2 !

! D166 D(39,41,54,57) 25.2028 estimate D2E/DX2 !

! D167 D(6,44,45,47) 179.193 estimate D2E/DX2 !

! D168 D(6,44,45,48) -2.2667 estimate D2E/DX2 !

! D169 D(46,44,45,47) 0.1549 estimate D2E/DX2 !

! D170 D(46,44,45,48) 178.6952 estimate D2E/DX2 !

! D171 D(6,44,46,49) -179.0894 estimate D2E/DX2 !

! D172 D(6,44,46,50) 0.4005 estimate D2E/DX2 !

! D173 D(45,44,46,49) -0.0794 estimate D2E/DX2 !

! D174 D(45,44,46,50) 179.4105 estimate D2E/DX2 !

! D175 D(44,45,47,51) -0.0421 estimate D2E/DX2 !

! D176 D(44,45,47,52) 179.6514 estimate D2E/DX2 !

! D177 D(48,45,47,51) -178.589 estimate D2E/DX2 !

! D178 D(48,45,47,52) 1.1044 estimate D2E/DX2 !

! D179 D(44,46,49,51) -0.1111 estimate D2E/DX2 !

! D180 D(44,46,49,53) 179.4184 estimate D2E/DX2 !

! D181 D(50,46,49,51) -179.5978 estimate D2E/DX2 !

! D182 D(50,46,49,53) -0.0682 estimate D2E/DX2 !

! D183 D(45,47,51,49) -0.1457 estimate D2E/DX2 !

! D184 D(45,47,51,66) 179.0564 estimate D2E/DX2 !

! D185 D(52,47,51,49) -179.839 estimate D2E/DX2 !

! D186 D(52,47,51,66) -0.6368 estimate D2E/DX2 !

! D187 D(46,49,51,47) 0.2222 estimate D2E/DX2 !

! D188 D(46,49,51,66) -178.9764 estimate D2E/DX2 !

! D189 D(53,49,51,47) -179.3068 estimate D2E/DX2 !

! D190 D(53,49,51,66) 1.4946 estimate D2E/DX2 !

! D191 D(47,51,66,67) 163.4308 estimate D2E/DX2 !

! D192 D(47,51,66,68) -76.8232 estimate D2E/DX2 !

! D193 D(47,51,66,69) 41.9959 estimate D2E/DX2 !

! D194 D(49,51,66,67) -17.3966 estimate D2E/DX2 !

! D195 D(49,51,66,68) 102.3494 estimate D2E/DX2 !

! D196 D(49,51,66,69) -138.8315 estimate D2E/DX2 !

--------------------------------------------------------------------------------

Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06

Number of steps in this run= 422 maximum allowed number of steps= 444.

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Stoichiometry C37H30BF2N3O

Framework group C1[X(C37H30BF2N3O)]

Deg. of freedom 216

Full point group C1 NOp 1

Largest Abelian subgroup C1 NOp 1

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.648507 -1.010723 0.025269

2 6 0 -0.645593 1.286644 0.049371

3 6 0 1.072090 -2.424041 -0.081026

4 6 0 -0.121292 -3.213659 -0.036441

5 6 0 -1.224329 -2.317196 0.037255

6 6 0 -1.223564 2.618176 -0.031660

7 6 0 1.063247 2.727687 0.050745

8 6 0 -0.139839 3.483731 -0.041101

9 5 0 1.686747 0.134630 0.126174

10 7 0 0.751964 1.395138 0.117398

11 7 0 0.744534 -1.106406 -0.062321

12 7 0 -1.308523 0.148676 0.043796

13 6 0 -2.663428 -2.575701 0.077755

14 6 0 -3.511760 -1.781362 0.878690

15 6 0 -3.257460 -3.587274 -0.706921

16 6 0 -4.888657 -1.995983 0.894896

17 1 0 -3.079311 -1.000739 1.504436

18 6 0 -4.634415 -3.781949 -0.695961

19 1 0 -2.629197 -4.211773 -1.340514

20 6 0 -5.479488 -2.997390 0.109463

21 1 0 -5.519952 -1.373750 1.534906

22 1 0 -5.069228 -4.560710 -1.328500

23 6 0 2.457828 -2.922454 -0.110793

24 6 0 2.923410 -3.769163 0.913682

25 6 0 3.334295 -2.597199 -1.161524

26 6 0 4.225331 -4.264738 0.887526

27 1 0 2.266689 -4.012822 1.751381

28 6 0 4.628640 -3.113447 -1.185804

29 1 0 2.993962 -1.941929 -1.962877

30 6 0 5.100536 -3.954557 -0.165873

31 1 0 4.570633 -4.904261 1.703939

32 1 0 5.290424 -2.856024 -2.016926

33 1 0 -0.174925 4.567845 -0.090434

34 6 0 2.396496 3.319096 0.066251

35 6 0 3.501116 2.742370 0.729389

36 6 0 2.589216 4.562447 -0.579470

37 6 0 4.735153 3.383157 0.736369

38 1 0 3.379685 1.804391 1.268474

39 6 0 3.832185 5.184423 -0.578957

40 1 0 1.760636 5.028998 -1.114824

41 6 0 4.933163 4.609231 0.078077

42 1 0 5.569235 2.924464 1.273797

43 1 0 3.953886 6.137896 -1.098923

44 6 0 -2.639026 2.973774 -0.075497

45 6 0 -3.048594 4.274412 0.296361

46 6 0 -3.636129 2.069472 -0.499297

47 6 0 -4.386526 4.647297 0.249032

48 1 0 -2.307263 4.994026 0.649787

49 6 0 -4.974306 2.454351 -0.544392

50 1 0 -3.349479 1.062828 -0.801372

51 6 0 -5.380618 3.745060 -0.171072

52 1 0 -4.671661 5.659280 0.548735

53 1 0 -5.724183 1.735644 -0.886041

54 6 0 6.282841 5.272383 0.062366

55 1 0 6.831143 5.089100 0.997275

56 1 0 6.901153 4.872630 -0.758808

57 1 0 6.197757 6.357055 -0.090447

58 6 0 6.493866 -4.525085 -0.209504

59 1 0 6.490598 -5.529556 -0.664169

60 1 0 7.166819 -3.896335 -0.808785

61 1 0 6.916973 -4.628336 0.799819

62 6 0 -6.964550 -3.243419 0.142755

63 1 0 -7.505631 -2.383906 0.561770

64 1 0 -7.359280 -3.448451 -0.863257

65 1 0 -7.203229 -4.121528 0.765530

66 6 0 -6.830193 4.149110 -0.199811

67 1 0 -7.427728 3.459898 -0.811855

68 1 0 -7.257561 4.146985 0.816676

69 1 0 -6.954991 5.167557 -0.596268

70 9 0 2.611938 0.239518 -0.911329

71 9 0 2.333578 -0.006693 1.366647

72 6 0 -0.084541 -4.671389 -0.036361

73 1 0 0.940717 -5.094162 -0.162924

74 8 0 -1.046936 -5.426410 0.094606

---------------------------------------------------------------------

Rotational constants (GHZ): 0.0769234 0.0615630 0.0351664

Standard basis: 6-311G(2d,p) (5D, 7F)

There are 1192 symmetry adapted basis functions of A symmetry.

Integral buffers will be 131072 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

1192 basis functions, 1912 primitive gaussians, 1280 cartesian basis functions

152 alpha electrons 152 beta electrons

nuclear repulsion energy 4924.8578643454 Hartrees.

NAtoms= 74 NActive= 74 NUniq= 74 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T

------------------------------------------------------------------------------

Polarizable Continuum Model (PCM)

=================================

Model : C-PCM.

Atomic radii : UFF (Universal Force Field).

Polarization charges : Total charges.

Charge compensation : None.

Solution method : Matrix inversion.

Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100).

Cavity algorithm : GePol (No added spheres)

Default sphere list used, NSphG= 74.

Lebedev-Laikov grids with approx. 5.0 points / Ang**2.

Smoothing algorithm: Karplus/York (Gamma=1.0000).

Polarization charges: spherical gaussians, with

point-specific exponents (IZeta= 3).

Self-potential: point-specific (ISelfS= 7).

Self-field : sphere-specific E.n sum rule (ISelfD= 2).

1st derivatives : Analytical E(r).r(x)/FMM algorithm (CHGder, D1EAlg=3).

Cavity 1st derivative terms included.

Solvent : Acetonitrile, Eps= 35.688000 Eps(inf)= 1.806874

------------------------------------------------------------------------------

One-electron integrals computed using PRISM.

NBasis= 1192 RedAO= T NBF= 1192

NBsUse= 1192 1.00D-06 NBFU= 1192

Harris functional with IExCor= 1009 diagonalized for initial guess.

ExpMin= 9.89D-02 ExpMax= 1.14D+04 ExpMxC= 1.72D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00

HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001

NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T

Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0

NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0

I1Cent= 4 NGrid= 0.

Petite list used in FoFCou.

Initial guess orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A)

The electronic state of the initial guess is 1-A.

Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

EnCoef did 2 forward-backward iterations

Error on total polarization charges = 0.01983

SCF Done: E(RPBE-PBE) = -1890.44053763 A.U. after 18 cycles

Convg = 0.2788D-08 -V/T = 2.0035

ExpMin= 9.89D-02 ExpMax= 1.14D+04 ExpMxC= 1.72D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00

HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Range of M.O.s used for correlation: 45 1192

NBasis= 1192 NAE= 152 NBE= 152 NFC= 44 NFV= 0

NROrb= 1148 NOA= 108 NOB= 108 NVA= 1040 NVB= 1040

**** Warning!!: The largest alpha MO coefficient is 0.18371229D+02

**** Warning!!: The smallest alpha delta epsilon is 0.45579970D-01

Would need an additional337324100000 words for in-memory AO integral storage.

NEqPCM: Using equilibrium solvation (IEInf=0, Eps= 35.6880, EpsInf= 1.8069)

Orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A)

24 initial guesses have been made.

Convergence on wavefunction: 0.000001000000000

Iteration 1 Dimension 24 NMult 24

CISAX will form 12 AO SS matrices at one time.

New state 1 was old state 2

New state 2 was old state 1

New state 3 was old state 4

New state 4 was old state 3

New state 5 was old state 6

New state 6 was old state 8

Iteration 2 Dimension 48 NMult 48

New state 3 was old state 4

New state 4 was old state 3

Iteration 3 Dimension 54 NMult 54

Iteration 4 Dimension 60 NMult 60

Iteration 5 Dimension 66 NMult 66

Iteration 6 Dimension 72 NMult 72

Iteration 7 Dimension 78 NMult 78

Iteration 8 Dimension 84 NMult 84

Iteration 9 Dimension 90 NMult 90

Iteration 10 Dimension 96 NMult 96

Iteration 11 Dimension 102 NMult 102

Iteration 12 Dimension 108 NMult 108

Iteration 13 Dimension 114 NMult 114

Iteration 14 Dimension 120 NMult 120

Iteration 15 Dimension 126 NMult 126

Iteration 16 Dimension 132 NMult 132

Iteration 17 Dimension 138 NMult 138

Iteration 18 Dimension 144 NMult 144

Iteration 19 Dimension 150 NMult 150

Iteration 20 Dimension 156 NMult 156

Iteration 21 Dimension 162 NMult 162

Iteration 22 Dimension 168 NMult 168

Iteration 23 Dimension 174 NMult 174

Iteration 24 Dimension 180 NMult 180

Iteration 25 Dimension 186 NMult 186

Iteration 26 Dimension 192 NMult 192

Iteration 27 Dimension 198 NMult 198

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 12 NMult 210

Iteration 2 Dimension 18 NMult 216

Iteration 3 Dimension 24 NMult 222

Iteration 4 Dimension 30 NMult 228

Iteration 5 Dimension 36 NMult 234

Iteration 6 Dimension 42 NMult 240

Iteration 7 Dimension 48 NMult 246

Iteration 8 Dimension 54 NMult 252

Iteration 9 Dimension 60 NMult 258

Iteration 10 Dimension 66 NMult 264

Iteration 11 Dimension 72 NMult 270

Iteration 12 Dimension 78 NMult 276

Iteration 13 Dimension 84 NMult 282

Iteration 14 Dimension 90 NMult 288

Iteration 15 Dimension 96 NMult 294

Iteration 16 Dimension 102 NMult 300

Iteration 17 Dimension 108 NMult 306

Iteration 18 Dimension 114 NMult 312

Iteration 19 Dimension 120 NMult 318

Iteration 20 Dimension 126 NMult 324

Iteration 21 Dimension 132 NMult 330

Iteration 22 Dimension 138 NMult 336

Iteration 23 Dimension 144 NMult 342

Iteration 24 Dimension 150 NMult 348

Iteration 25 Dimension 156 NMult 354

Iteration 26 Dimension 162 NMult 360

Iteration 27 Dimension 168 NMult 366

Iteration 28 Dimension 174 NMult 372

Iteration 29 Dimension 180 NMult 378

Iteration 30 Dimension 186 NMult 384

Iteration 31 Dimension 192 NMult 390

Iteration 32 Dimension 198 NMult 396

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 12 NMult 408

Iteration 2 Dimension 18 NMult 414

Iteration 3 Dimension 24 NMult 420

Iteration 4 Dimension 30 NMult 426

Iteration 5 Dimension 36 NMult 432

Iteration 6 Dimension 42 NMult 438

Iteration 7 Dimension 48 NMult 444

Iteration 8 Dimension 54 NMult 450

Iteration 9 Dimension 60 NMult 456

Iteration 10 Dimension 66 NMult 462

Iteration 11 Dimension 72 NMult 468

Iteration 12 Dimension 78 NMult 474

Iteration 13 Dimension 84 NMult 480

Iteration 14 Dimension 90 NMult 486

Iteration 15 Dimension 96 NMult 492

Iteration 16 Dimension 102 NMult 498

Iteration 17 Dimension 108 NMult 504

Iteration 18 Dimension 114 NMult 510

Iteration 19 Dimension 120 NMult 516

Iteration 20 Dimension 126 NMult 522

Iteration 21 Dimension 132 NMult 528

Iteration 22 Dimension 138 NMult 534

Iteration 23 Dimension 144 NMult 540

Iteration 24 Dimension 150 NMult 546

Iteration 25 Dimension 156 NMult 552

Iteration 26 Dimension 162 NMult 558

Iteration 27 Dimension 168 NMult 564

Iteration 28 Dimension 174 NMult 570

Iteration 29 Dimension 180 NMult 576

Iteration 30 Dimension 186 NMult 582

Iteration 31 Dimension 192 NMult 588

Iteration 32 Dimension 198 NMult 594

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 12 NMult 606

Iteration 2 Dimension 18 NMult 612

Iteration 3 Dimension 24 NMult 618

Iteration 4 Dimension 30 NMult 624

Iteration 5 Dimension 36 NMult 630

Iteration 6 Dimension 42 NMult 636

Iteration 7 Dimension 48 NMult 642

Iteration 8 Dimension 54 NMult 648

Iteration 9 Dimension 60 NMult 654

Iteration 10 Dimension 66 NMult 660

Iteration 11 Dimension 72 NMult 666

Iteration 12 Dimension 78 NMult 672

Iteration 13 Dimension 84 NMult 678

Iteration 14 Dimension 90 NMult 684

Iteration 15 Dimension 96 NMult 690

Iteration 16 Dimension 102 NMult 696

Iteration 17 Dimension 108 NMult 702

Iteration 18 Dimension 114 NMult 708

Iteration 19 Dimension 120 NMult 714

Iteration 20 Dimension 126 NMult 720

Iteration 21 Dimension 132 NMult 726

Iteration 22 Dimension 138 NMult 732

Iteration 23 Dimension 144 NMult 738

Iteration 24 Dimension 150 NMult 744

Iteration 25 Dimension 156 NMult 750

Iteration 26 Dimension 162 NMult 756

Iteration 27 Dimension 168 NMult 762

Iteration 28 Dimension 174 NMult 768

Iteration 29 Dimension 180 NMult 774

Iteration 30 Dimension 186 NMult 780

Iteration 31 Dimension 191 NMult 785

Iteration 32 Dimension 196 NMult 790

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 12 NMult 802

Iteration 2 Dimension 18 NMult 808

Iteration 3 Dimension 24 NMult 814

Iteration 4 Dimension 30 NMult 820

Iteration 5 Dimension 36 NMult 826

Iteration 6 Dimension 42 NMult 832

Iteration 7 Dimension 48 NMult 838

Iteration 8 Dimension 54 NMult 844

Iteration 9 Dimension 60 NMult 850

Iteration 10 Dimension 66 NMult 856

Iteration 11 Dimension 72 NMult 862

Iteration 12 Dimension 78 NMult 868

Iteration 13 Dimension 84 NMult 874

Iteration 14 Dimension 90 NMult 880

Iteration 15 Dimension 96 NMult 886

Iteration 16 Dimension 102 NMult 892

Iteration 17 Dimension 108 NMult 898

Iteration 18 Dimension 114 NMult 904

Iteration 19 Dimension 120 NMult 910

Iteration 20 Dimension 126 NMult 916

Iteration 21 Dimension 132 NMult 922

Iteration 22 Dimension 138 NMult 928

Iteration 23 Dimension 144 NMult 934

Iteration 24 Dimension 150 NMult 940

Iteration 25 Dimension 156 NMult 946

Iteration 26 Dimension 161 NMult 951

Iteration 27 Dimension 167 NMult 957

Iteration 28 Dimension 173 NMult 963

Iteration 29 Dimension 178 NMult 968

Iteration 30 Dimension 182 NMult 972

Iteration 31 Dimension 186 NMult 976

Iteration 32 Dimension 190 NMult 980

Iteration 33 Dimension 194 NMult 984

Iteration 34 Dimension 198 NMult 988

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 10 NMult 998

Iteration 2 Dimension 16 NMult 1004

Iteration 3 Dimension 22 NMult 1010

Iteration 4 Dimension 28 NMult 1016

Iteration 5 Dimension 34 NMult 1022

Iteration 6 Dimension 40 NMult 1028

Iteration 7 Dimension 46 NMult 1034

Iteration 8 Dimension 52 NMult 1040

Iteration 9 Dimension 58 NMult 1046

Iteration 10 Dimension 64 NMult 1052

Iteration 11 Dimension 70 NMult 1058

Iteration 12 Dimension 76 NMult 1064

Iteration 13 Dimension 82 NMult 1070

Iteration 14 Dimension 88 NMult 1076

Iteration 15 Dimension 94 NMult 1082

Iteration 16 Dimension 100 NMult 1088

Iteration 17 Dimension 106 NMult 1094

Iteration 18 Dimension 112 NMult 1100

Iteration 19 Dimension 118 NMult 1106

Iteration 20 Dimension 124 NMult 1112

Iteration 21 Dimension 130 NMult 1118

Iteration 22 Dimension 136 NMult 1124

Iteration 23 Dimension 142 NMult 1130

Iteration 24 Dimension 148 NMult 1136

Iteration 25 Dimension 153 NMult 1141

Iteration 26 Dimension 159 NMult 1147

Iteration 27 Dimension 165 NMult 1153

Iteration 28 Dimension 171 NMult 1159

Iteration 29 Dimension 176 NMult 1164

Iteration 30 Dimension 180 NMult 1168

Iteration 31 Dimension 183 NMult 1171

Iteration 32 Dimension 185 NMult 1173

Iteration 33 Dimension 189 NMult 1177

Iteration 34 Dimension 192 NMult 1180

Iteration 35 Dimension 195 NMult 1183

Iteration 36 Dimension 199 NMult 1187

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 9 NMult 1196

Iteration 2 Dimension 15 NMult 1202

Iteration 3 Dimension 21 NMult 1208

Iteration 4 Dimension 27 NMult 1214

Iteration 5 Dimension 33 NMult 1220

Iteration 6 Dimension 39 NMult 1226

Iteration 7 Dimension 45 NMult 1232

Iteration 8 Dimension 51 NMult 1238

Iteration 9 Dimension 57 NMult 1244

Iteration 10 Dimension 63 NMult 1250

Iteration 11 Dimension 69 NMult 1256

Iteration 12 Dimension 75 NMult 1262

Iteration 13 Dimension 81 NMult 1268

Iteration 14 Dimension 87 NMult 1274

Iteration 15 Dimension 93 NMult 1280

Iteration 16 Dimension 99 NMult 1286

Iteration 17 Dimension 105 NMult 1292

Iteration 18 Dimension 111 NMult 1298

Iteration 19 Dimension 117 NMult 1304

Iteration 20 Dimension 123 NMult 1310

Iteration 21 Dimension 129 NMult 1316

Iteration 22 Dimension 135 NMult 1322

Iteration 23 Dimension 141 NMult 1328

Iteration 24 Dimension 147 NMult 1334

Iteration 25 Dimension 153 NMult 1340

Iteration 26 Dimension 159 NMult 1346

Iteration 27 Dimension 164 NMult 1351

Iteration 28 Dimension 168 NMult 1355

Iteration 29 Dimension 172 NMult 1359

Iteration 30 Dimension 175 NMult 1362

Iteration 31 Dimension 177 NMult 1364

Iteration 32 Dimension 178 NMult 1365

Iteration 33 Dimension 179 NMult 1366

Iteration 34 Dimension 181 NMult 1368

Iteration 35 Dimension 183 NMult 1370

Iteration 36 Dimension 185 NMult 1372

Iteration 37 Dimension 187 NMult 1374

Iteration 38 Dimension 189 NMult 1376

Iteration 39 Dimension 191 NMult 1378

Iteration 40 Dimension 193 NMult 1380

Iteration 41 Dimension 195 NMult 1382

Iteration 42 Dimension 197 NMult 1384

Iteration 43 Dimension 199 NMult 1386

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 8 NMult 1394

Iteration 2 Dimension 14 NMult 1400

Iteration 3 Dimension 20 NMult 1406

Iteration 4 Dimension 26 NMult 1412

Iteration 5 Dimension 32 NMult 1418

Iteration 6 Dimension 38 NMult 1424

Iteration 7 Dimension 44 NMult 1430

Iteration 8 Dimension 50 NMult 1436

Iteration 9 Dimension 56 NMult 1442

Iteration 10 Dimension 62 NMult 1448

Iteration 11 Dimension 68 NMult 1454

Iteration 12 Dimension 74 NMult 1460

Iteration 13 Dimension 80 NMult 1466

Iteration 14 Dimension 86 NMult 1472

Iteration 15 Dimension 92 NMult 1478

Iteration 16 Dimension 98 NMult 1484

Iteration 17 Dimension 104 NMult 1490

Iteration 18 Dimension 110 NMult 1496

Iteration 19 Dimension 116 NMult 1502

Iteration 20 Dimension 122 NMult 1508

Iteration 21 Dimension 128 NMult 1514

Iteration 22 Dimension 134 NMult 1520

Iteration 23 Dimension 140 NMult 1526

Iteration 24 Dimension 146 NMult 1532

Iteration 25 Dimension 151 NMult 1537

Iteration 26 Dimension 156 NMult 1542

Iteration 27 Dimension 161 NMult 1547

Iteration 28 Dimension 165 NMult 1551

Iteration 29 Dimension 168 NMult 1554

Iteration 30 Dimension 170 NMult 1556

Iteration 31 Dimension 172 NMult 1558

Iteration 32 Dimension 173 NMult 1559

Iteration 33 Dimension 174 NMult 1560

Iteration 34 Dimension 175 NMult 1561

Iteration 35 Dimension 176 NMult 1562

Iteration 36 Dimension 177 NMult 1563

Iteration 37 Dimension 179 NMult 1565

Iteration 38 Dimension 180 NMult 1566

Iteration 39 Dimension 182 NMult 1568

Iteration 40 Dimension 183 NMult 1569

Iteration 41 Dimension 185 NMult 1571

Iteration 42 Dimension 188 NMult 1574

Iteration 43 Dimension 190 NMult 1576

Iteration 44 Dimension 192 NMult 1578

Iteration 45 Dimension 194 NMult 1580

Iteration 46 Dimension 196 NMult 1582

Iteration 47 Dimension 199 NMult 1585

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 8 NMult 1593

Iteration 2 Dimension 14 NMult 1599

Iteration 3 Dimension 20 NMult 1605

Iteration 4 Dimension 26 NMult 1611

Iteration 5 Dimension 32 NMult 1617

Iteration 6 Dimension 38 NMult 1623

Iteration 7 Dimension 44 NMult 1629

Iteration 8 Dimension 50 NMult 1635

Iteration 9 Dimension 56 NMult 1641

Iteration 10 Dimension 62 NMult 1647

Iteration 11 Dimension 68 NMult 1653

Iteration 12 Dimension 74 NMult 1659

Iteration 13 Dimension 80 NMult 1665

Iteration 14 Dimension 86 NMult 1671

Iteration 15 Dimension 92 NMult 1677

Iteration 16 Dimension 98 NMult 1683

Iteration 17 Dimension 104 NMult 1689

Iteration 18 Dimension 110 NMult 1695

Iteration 19 Dimension 116 NMult 1701

Iteration 20 Dimension 122 NMult 1707

Iteration 21 Dimension 128 NMult 1713

Iteration 22 Dimension 134 NMult 1719

Iteration 23 Dimension 140 NMult 1725

Iteration 24 Dimension 146 NMult 1731

Iteration 25 Dimension 151 NMult 1736

Iteration 26 Dimension 156 NMult 1741

Iteration 27 Dimension 161 NMult 1746

Iteration 28 Dimension 163 NMult 1748

Iteration 29 Dimension 164 NMult 1749

Iteration 30 Dimension 166 NMult 1751

Iteration 31 Dimension 168 NMult 1753

Iteration 32 Dimension 170 NMult 1755

Iteration 33 Dimension 171 NMult 1756

Iteration 34 Dimension 172 NMult 1757

Iteration 35 Dimension 173 NMult 1758

Iteration 36 Dimension 175 NMult 1760

Iteration 37 Dimension 177 NMult 1762

Iteration 38 Dimension 180 NMult 1765

Iteration 39 Dimension 181 NMult 1766

Iteration 40 Dimension 183 NMult 1768

Iteration 41 Dimension 184 NMult 1769

Iteration 42 Dimension 185 NMult 1770

Iteration 43 Dimension 187 NMult 1772

Iteration 44 Dimension 189 NMult 1774

Iteration 45 Dimension 190 NMult 1775

Iteration 46 Dimension 192 NMult 1777

Iteration 47 Dimension 194 NMult 1779

Iteration 48 Dimension 196 NMult 1781

Iteration 49 Dimension 198 NMult 1783

Iteration 50 Dimension 200 NMult 1785

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 8 NMult 1793

Iteration 2 Dimension 14 NMult 1799

Iteration 3 Dimension 20 NMult 1805

Iteration 4 Dimension 26 NMult 1811

Iteration 5 Dimension 32 NMult 1817

Iteration 6 Dimension 38 NMult 1823

Iteration 7 Dimension 44 NMult 1829

Iteration 8 Dimension 50 NMult 1835

Iteration 9 Dimension 56 NMult 1841

Iteration 10 Dimension 62 NMult 1847

Iteration 11 Dimension 68 NMult 1853

Iteration 12 Dimension 74 NMult 1859

Iteration 13 Dimension 80 NMult 1865

Iteration 14 Dimension 86 NMult 1871

Iteration 15 Dimension 92 NMult 1877

Iteration 16 Dimension 98 NMult 1883

Iteration 17 Dimension 104 NMult 1889

Iteration 18 Dimension 110 NMult 1895

Iteration 19 Dimension 116 NMult 1901

Iteration 20 Dimension 122 NMult 1907

Iteration 21 Dimension 128 NMult 1913

Iteration 22 Dimension 134 NMult 1919

Iteration 23 Dimension 140 NMult 1925

Iteration 24 Dimension 146 NMult 1931

Iteration 25 Dimension 151 NMult 1936

Iteration 26 Dimension 155 NMult 1940

Iteration 27 Dimension 159 NMult 1944

Iteration 28 Dimension 160 NMult 1945

Iteration 29 Dimension 162 NMult 1947

Iteration 30 Dimension 164 NMult 1949

Iteration 31 Dimension 165 NMult 1950

Iteration 32 Dimension 166 NMult 1951

Iteration 33 Dimension 167 NMult 1952

Iteration 34 Dimension 168 NMult 1953

Iteration 35 Dimension 169 NMult 1954

Iteration 36 Dimension 170 NMult 1955

Iteration 37 Dimension 171 NMult 1956

Iteration 38 Dimension 173 NMult 1958

Iteration 39 Dimension 175 NMult 1960

Iteration 40 Dimension 177 NMult 1962

Iteration 41 Dimension 179 NMult 1964

Iteration 42 Dimension 181 NMult 1966

Iteration 43 Dimension 182 NMult 1967

Iteration 44 Dimension 183 NMult 1968

Iteration 45 Dimension 184 NMult 1969

Iteration 46 Dimension 185 NMult 1970

Iteration 47 Dimension 186 NMult 1971

Iteration 48 Dimension 188 NMult 1973

Iteration 49 Dimension 190 NMult 1975

Iteration 50 Dimension 192 NMult 1977

Iteration 51 Dimension 194 NMult 1979

Iteration 52 Dimension 195 NMult 1980

Iteration 53 Dimension 196 NMult 1981

Iteration 54 Dimension 199 NMult 1984

Davidson failed to converge within maximum sub-space dimensions.

Restart with updated initial guess:

Iteration 1 Dimension 8 NMult 1992

Iteration 2 Dimension 14 NMult 1998

Iteration 3 Dimension 20 NMult 2004

Iteration 4 Dimension 26 NMult 2010

Iteration 5 Dimension 32 NMult 2016

Iteration 6 Dimension 38 NMult 2022

Iteration 7 Dimension 44 NMult 2028

Can anyone tell me the solution?

More Haamid Rasool Bhat's questions See All
Similar questions and discussions