I am trying to optimize an excited state of a molecule as i have to calculate the emission energy ........ The job is running from last six days. My running output is as:
Entering Gaussian System, Link 0=g09
Input=/home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/3excited_opt_pbepbe_6311G2dp_cpcm.com
Output=/home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/3excited_opt_pbepbe_6311G2dp_cpcm.log
Initial command:
/opt/g09/l1.exe /home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/Gau-34502.inp -scrdir=/home/HaamidBhat/HAAMID/AZA_BODIPY/EXCITED_OPT/PCM/
Entering Link 1 = /opt/g09/l1.exe PID= 34504.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision C.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
******************************************
Gaussian 09: EM64L-G09RevC.01 23-Sep-2011
9-Jan-2016
******************************************
%nprocshared=2
Will use up to 2 processors via shared memory.
%mem=2GB
%chk=3excited_opt_pbepbe_6311G2dp_cpcm.chk
----------------------------------------------------------------------
# opt td=(singlets,nstates=6,root=1) pbepbe/6-311g(2d,p) scrf=(cpcm,so
lvent=acetonitrile) geom=connectivity
----------------------------------------------------------------------
1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=4,6=6,7=102,11=2,16=1,25=1,30=1,70=2101,71=1,72=2,74=1009/1,2,8,3;
4//1;
5/5=2,38=5,53=2/2;
8/6=1,10=2,107=1,108=6/1;
9/8=1,15=2,41=6,42=1,48=1/14;
10/5=4/2;
6/7=2,8=2,9=2,10=2/1;
7/12=6,13=5,14=1/1,2,3,16;
1/14=-1,18=20,19=15/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=4,6=6,7=102,11=2,16=1,25=1,30=1,70=2105,71=1,72=2,74=1009/1,2,8,3;
4/5=5,16=3/1;
5/5=2,38=5,53=2/2;
8/6=1,10=2,107=1,108=6/1;
9/8=1,15=2,41=6,42=1,48=1,49=4/14;
10/5=4/2;
7/12=6,13=5,14=1/1,2,3,16;
1/14=-1,18=20,19=15/3(-8);
2/9=110/2;
6/7=2,8=2,9=2,10=2/1;
99//99;
---------------------------------
3excited_opt_pbepbe_6311G2dp_cpcm
---------------------------------
Charge = 0 Multiplicity = 1
Symbolic Z-Matrix:
C -0.64851 -1.01072 0.02527
C -0.64559 1.28664 0.04937
C 1.07209 -2.42404 -0.08103
C -0.12129 -3.21366 -0.03644
C -1.22433 -2.3172 0.03726
C -1.22356 2.61818 -0.03166
C 1.06325 2.72769 0.05074
C -0.13984 3.48373 -0.0411
B 1.68675 0.13463 0.12617
N 0.75196 1.39514 0.1174
N 0.74453 -1.10641 -0.06232
N -1.30852 0.14868 0.0438
C -2.66343 -2.5757 0.07775
C -3.51176 -1.78136 0.87869
C -3.25746 -3.58727 -0.70692
C -4.88866 -1.99598 0.8949
H -3.07931 -1.00074 1.50444
C -4.63442 -3.78195 -0.69596
H -2.6292 -4.21177 -1.34051
C -5.47949 -2.99739 0.10946
H -5.51995 -1.37375 1.53491
H -5.06923 -4.56071 -1.3285
C 2.45783 -2.92245 -0.11079
C 2.92341 -3.76916 0.91368
C 3.3343 -2.5972 -1.16152
C 4.22533 -4.26474 0.88753
H 2.26669 -4.01282 1.75138
C 4.62864 -3.11345 -1.1858
H 2.99396 -1.94193 -1.96288
C 5.10054 -3.95456 -0.16587
H 4.57063 -4.90426 1.70394
H 5.29042 -2.85602 -2.01693
H -0.17492 4.56785 -0.09043
C 2.3965 3.3191 0.06625
C 3.50112 2.74237 0.72939
C 2.58922 4.56245 -0.57947
C 4.73515 3.38316 0.73637
H 3.37968 1.80439 1.26847
C 3.83218 5.18442 -0.57896
H 1.76064 5.029 -1.11482
C 4.93316 4.60923 0.07808
H 5.56923 2.92446 1.2738
H 3.95389 6.1379 -1.09892
C -2.63903 2.97377 -0.0755
C -3.04859 4.27441 0.29636
C -3.63613 2.06947 -0.4993
C -4.38653 4.6473 0.24903
H -2.30726 4.99403 0.64979
C -4.97431 2.45435 -0.54439
H -3.34948 1.06283 -0.80137
C -5.38062 3.74506 -0.17107
H -4.67166 5.65928 0.54873
H -5.72418 1.73564 -0.88604
C 6.28284 5.27238 0.06237
H 6.83114 5.0891 0.99728
H 6.90115 4.87263 -0.75881
H 6.19776 6.35706 -0.09045
C 6.49387 -4.52508 -0.2095
H 6.4906 -5.52956 -0.66417
H 7.16682 -3.89633 -0.80878
H 6.91697 -4.62834 0.79982
C -6.96455 -3.24342 0.14275
H -7.50563 -2.38391 0.56177
H -7.35928 -3.44845 -0.86326
H -7.20323 -4.12153 0.76553
C -6.83019 4.14911 -0.19981
H -7.42773 3.4599 -0.81186
H -7.25756 4.14698 0.81668
H -6.95499 5.16756 -0.59627
F 2.61194 0.23952 -0.91133
F 2.33358 -0.00669 1.36665
C -0.08454 -4.67139 -0.03636
H 0.94072 -5.09416 -0.16292
O -1.04694 -5.42641 0.09461
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,5) 1.4278 estimate D2E/DX2 !
! R2 R(1,11) 1.3991 estimate D2E/DX2 !
! R3 R(1,12) 1.3342 estimate D2E/DX2 !
! R4 R(2,6) 1.4538 estimate D2E/DX2 !
! R5 R(2,10) 1.4034 estimate D2E/DX2 !
! R6 R(2,12) 1.317 estimate D2E/DX2 !
! R7 R(3,4) 1.4317 estimate D2E/DX2 !
! R8 R(3,11) 1.3579 estimate D2E/DX2 !
! R9 R(3,23) 1.4729 estimate D2E/DX2 !
! R10 R(4,5) 1.4233 estimate D2E/DX2 !
! R11 R(4,72) 1.4582 estimate D2E/DX2 !
! R12 R(5,13) 1.4627 estimate D2E/DX2 !
! R13 R(6,8) 1.387 estimate D2E/DX2 !
! R14 R(6,44) 1.4601 estimate D2E/DX2 !
! R15 R(7,8) 1.4239 estimate D2E/DX2 !
! R16 R(7,10) 1.37 estimate D2E/DX2 !
! R17 R(7,34) 1.4586 estimate D2E/DX2 !
! R18 R(8,33) 1.0858 estimate D2E/DX2 !
! R19 R(9,10) 1.5693 estimate D2E/DX2 !
! R20 R(9,11) 1.5695 estimate D2E/DX2 !
! R21 R(9,70) 1.3941 estimate D2E/DX2 !
! R22 R(9,71) 1.4061 estimate D2E/DX2 !
! R23 R(13,14) 1.4114 estimate D2E/DX2 !
! R24 R(13,15) 1.4113 estimate D2E/DX2 !
! R25 R(14,16) 1.3936 estimate D2E/DX2 !
! R26 R(14,17) 1.0899 estimate D2E/DX2 !
! R27 R(15,18) 1.3907 estimate D2E/DX2 !
! R28 R(15,19) 1.0891 estimate D2E/DX2 !
! R29 R(16,20) 1.4031 estimate D2E/DX2 !
! R30 R(16,21) 1.0933 estimate D2E/DX2 !
! R31 R(18,20) 1.4066 estimate D2E/DX2 !
! R32 R(18,22) 1.0935 estimate D2E/DX2 !
! R33 R(20,62) 1.5057 estimate D2E/DX2 !
! R34 R(23,24) 1.4083 estimate D2E/DX2 !
! R35 R(23,25) 1.4064 estimate D2E/DX2 !
! R36 R(24,26) 1.3933 estimate D2E/DX2 !
! R37 R(24,27) 1.092 estimate D2E/DX2 !
! R38 R(25,28) 1.3937 estimate D2E/DX2 !
! R39 R(25,29) 1.0897 estimate D2E/DX2 !
! R40 R(26,30) 1.4042 estimate D2E/DX2 !
! R41 R(26,31) 1.093 estimate D2E/DX2 !
! R42 R(28,30) 1.4037 estimate D2E/DX2 !
! R43 R(28,32) 1.0932 estimate D2E/DX2 !
! R44 R(30,58) 1.5062 estimate D2E/DX2 !
! R45 R(34,35) 1.4116 estimate D2E/DX2 !
! R46 R(34,36) 1.4142 estimate D2E/DX2 !
! R47 R(35,37) 1.3905 estimate D2E/DX2 !
! R48 R(35,38) 1.0887 estimate D2E/DX2 !
! R49 R(36,39) 1.3899 estimate D2E/DX2 !
! R50 R(36,40) 1.0912 estimate D2E/DX2 !
! R51 R(37,41) 1.4056 estimate D2E/DX2 !
! R52 R(37,42) 1.0931 estimate D2E/DX2 !
! R53 R(39,41) 1.4052 estimate D2E/DX2 !
! R54 R(39,43) 1.0928 estimate D2E/DX2 !
! R55 R(41,54) 1.5039 estimate D2E/DX2 !
! R56 R(44,45) 1.4134 estimate D2E/DX2 !
! R57 R(44,46) 1.4112 estimate D2E/DX2 !
! R58 R(45,47) 1.3897 estimate D2E/DX2 !
! R59 R(45,48) 1.0919 estimate D2E/DX2 !
! R60 R(46,49) 1.3932 estimate D2E/DX2 !
! R61 R(46,50) 1.0894 estimate D2E/DX2 !
! R62 R(47,51) 1.4067 estimate D2E/DX2 !
! R63 R(47,52) 1.0933 estimate D2E/DX2 !
! R64 R(49,51) 1.4037 estimate D2E/DX2 !
! R65 R(49,53) 1.0934 estimate D2E/DX2 !
! R66 R(51,66) 1.5051 estimate D2E/DX2 !
! R67 R(54,55) 1.0992 estimate D2E/DX2 !
! R68 R(54,56) 1.1029 estimate D2E/DX2 !
! R69 R(54,57) 1.0987 estimate D2E/DX2 !
! R70 R(58,59) 1.1026 estimate D2E/DX2 !
! R71 R(58,60) 1.0988 estimate D2E/DX2 !
! R72 R(58,61) 1.0993 estimate D2E/DX2 !
! R73 R(62,63) 1.0987 estimate D2E/DX2 !
! R74 R(62,64) 1.1 estimate D2E/DX2 !
! R75 R(62,65) 1.1027 estimate D2E/DX2 !
! R76 R(66,67) 1.0985 estimate D2E/DX2 !
! R77 R(66,68) 1.1027 estimate D2E/DX2 !
! R78 R(66,69) 1.1 estimate D2E/DX2 !
! R79 R(72,73) 1.1162 estimate D2E/DX2 !
! R80 R(72,74) 1.2302 estimate D2E/DX2 !
! A1 A(5,1,11) 109.8467 estimate D2E/DX2 !
! A2 A(5,1,12) 126.5491 estimate D2E/DX2 !
! A3 A(11,1,12) 123.5626 estimate D2E/DX2 !
! A4 A(6,2,10) 109.1348 estimate D2E/DX2 !
! A5 A(6,2,12) 126.2303 estimate D2E/DX2 !
! A6 A(10,2,12) 124.6296 estimate D2E/DX2 !
! A7 A(4,3,11) 109.4929 estimate D2E/DX2 !
! A8 A(4,3,23) 126.7421 estimate D2E/DX2 !
! A9 A(11,3,23) 123.7504 estimate D2E/DX2 !
! A10 A(3,4,5) 107.4714 estimate D2E/DX2 !
! A11 A(3,4,72) 122.0297 estimate D2E/DX2 !
! A12 A(5,4,72) 130.4798 estimate D2E/DX2 !
! A13 A(1,5,4) 105.2689 estimate D2E/DX2 !
! A14 A(1,5,13) 123.9686 estimate D2E/DX2 !
! A15 A(4,5,13) 130.7384 estimate D2E/DX2 !
! A16 A(2,6,8) 105.1479 estimate D2E/DX2 !
! A17 A(2,6,44) 127.5988 estimate D2E/DX2 !
! A18 A(8,6,44) 127.2485 estimate D2E/DX2 !
! A19 A(8,7,10) 109.1234 estimate D2E/DX2 !
! A20 A(8,7,34) 123.8975 estimate D2E/DX2 !
! A21 A(10,7,34) 126.979 estimate D2E/DX2 !
! A22 A(6,8,7) 109.1713 estimate D2E/DX2 !
! A23 A(6,8,33) 126.7371 estimate D2E/DX2 !
! A24 A(7,8,33) 124.082 estimate D2E/DX2 !
! A25 A(10,9,11) 106.0723 estimate D2E/DX2 !
! A26 A(10,9,70) 109.3128 estimate D2E/DX2 !
! A27 A(10,9,71) 111.0802 estimate D2E/DX2 !
! A28 A(11,9,70) 111.6244 estimate D2E/DX2 !
! A29 A(11,9,71) 107.6156 estimate D2E/DX2 !
! A30 A(70,9,71) 111.0284 estimate D2E/DX2 !
! A31 A(2,10,7) 107.403 estimate D2E/DX2 !
! A32 A(2,10,9) 122.0968 estimate D2E/DX2 !
! A33 A(7,10,9) 130.2533 estimate D2E/DX2 !
! A34 A(1,11,3) 107.9036 estimate D2E/DX2 !
! A35 A(1,11,9) 122.4205 estimate D2E/DX2 !
! A36 A(3,11,9) 128.6171 estimate D2E/DX2 !
! A37 A(1,12,2) 120.1255 estimate D2E/DX2 !
! A38 A(5,13,14) 120.504 estimate D2E/DX2 !
! A39 A(5,13,15) 121.6944 estimate D2E/DX2 !
! A40 A(14,13,15) 117.7683 estimate D2E/DX2 !
! A41 A(13,14,16) 120.9146 estimate D2E/DX2 !
! A42 A(13,14,17) 119.3664 estimate D2E/DX2 !
! A43 A(16,14,17) 119.7113 estimate D2E/DX2 !
! A44 A(13,15,18) 120.8435 estimate D2E/DX2 !
! A45 A(13,15,19) 119.4478 estimate D2E/DX2 !
! A46 A(18,15,19) 119.7014 estimate D2E/DX2 !
! A47 A(14,16,20) 121.2938 estimate D2E/DX2 !
! A48 A(14,16,21) 119.3176 estimate D2E/DX2 !
! A49 A(20,16,21) 119.3883 estimate D2E/DX2 !
! A50 A(15,18,20) 121.42 estimate D2E/DX2 !
! A51 A(15,18,22) 119.2658 estimate D2E/DX2 !
! A52 A(20,18,22) 119.3141 estimate D2E/DX2 !
! A53 A(16,20,18) 117.7514 estimate D2E/DX2 !
! A54 A(16,20,62) 121.3024 estimate D2E/DX2 !
! A55 A(18,20,62) 120.9377 estimate D2E/DX2 !
! A56 A(3,23,24) 119.9852 estimate D2E/DX2 !
! A57 A(3,23,25) 121.5428 estimate D2E/DX2 !
! A58 A(24,23,25) 118.4573 estimate D2E/DX2 !
! A59 A(23,24,26) 120.6051 estimate D2E/DX2 !
! A60 A(23,24,27) 119.5646 estimate D2E/DX2 !
! A61 A(26,24,27) 119.802 estimate D2E/DX2 !
! A62 A(23,25,28) 120.4051 estimate D2E/DX2 !
! A63 A(23,25,29) 119.5942 estimate D2E/DX2 !
! A64 A(28,25,29) 119.9997 estimate D2E/DX2 !
! A65 A(24,26,30) 121.1919 estimate D2E/DX2 !
! A66 A(24,26,31) 119.2928 estimate D2E/DX2 !
! A67 A(30,26,31) 119.5152 estimate D2E/DX2 !
! A68 A(25,28,30) 121.4331 estimate D2E/DX2 !
! A69 A(25,28,32) 119.2253 estimate D2E/DX2 !
! A70 A(30,28,32) 119.3415 estimate D2E/DX2 !
! A71 A(26,30,28) 117.8979 estimate D2E/DX2 !
! A72 A(26,30,58) 120.971 estimate D2E/DX2 !
! A73 A(28,30,58) 121.124 estimate D2E/DX2 !
! A74 A(7,34,35) 123.6846 estimate D2E/DX2 !
! A75 A(7,34,36) 118.436 estimate D2E/DX2 !
! A76 A(35,34,36) 117.8439 estimate D2E/DX2 !
! A77 A(34,35,37) 120.5683 estimate D2E/DX2 !
! A78 A(34,35,38) 119.8258 estimate D2E/DX2 !
! A79 A(37,35,38) 119.5746 estimate D2E/DX2 !
! A80 A(34,36,39) 121.006 estimate D2E/DX2 !
! A81 A(34,36,40) 119.7628 estimate D2E/DX2 !
! A82 A(39,36,40) 119.2018 estimate D2E/DX2 !
! A83 A(35,37,41) 121.6432 estimate D2E/DX2 !
! A84 A(35,37,42) 119.0952 estimate D2E/DX2 !
! A85 A(41,37,42) 119.2601 estimate D2E/DX2 !
! A86 A(36,39,41) 121.1754 estimate D2E/DX2 !
! A87 A(36,39,43) 119.3304 estimate D2E/DX2 !
! A88 A(41,39,43) 119.4942 estimate D2E/DX2 !
! A89 A(37,41,39) 117.7512 estimate D2E/DX2 !
! A90 A(37,41,54) 121.0609 estimate D2E/DX2 !
! A91 A(39,41,54) 121.1827 estimate D2E/DX2 !
! A92 A(6,44,45) 119.8104 estimate D2E/DX2 !
! A93 A(6,44,46) 122.5409 estimate D2E/DX2 !
! A94 A(45,44,46) 117.6413 estimate D2E/DX2 !
! A95 A(44,45,47) 121.1263 estimate D2E/DX2 !
! A96 A(44,45,48) 119.6613 estimate D2E/DX2 !
! A97 A(47,45,48) 119.1965 estimate D2E/DX2 !
! A98 A(44,46,49) 120.7543 estimate D2E/DX2 !
! A99 A(44,46,50) 119.3063 estimate D2E/DX2 !
! A100 A(49,46,50) 119.9374 estimate D2E/DX2 !
! A101 A(45,47,51) 121.2271 estimate D2E/DX2 !
! A102 A(45,47,52) 119.3484 estimate D2E/DX2 !
! A103 A(51,47,52) 119.4238 estimate D2E/DX2 !
! A104 A(46,49,51) 121.564 estimate D2E/DX2 !
! A105 A(46,49,53) 119.1611 estimate D2E/DX2 !
! A106 A(51,49,53) 119.2732 estimate D2E/DX2 !
! A107 A(47,51,49) 117.6865 estimate D2E/DX2 !
! A108 A(47,51,66) 120.9399 estimate D2E/DX2 !
! A109 A(49,51,66) 121.3686 estimate D2E/DX2 !
! A110 A(41,54,55) 111.4232 estimate D2E/DX2 !
! A111 A(41,54,56) 110.5536 estimate D2E/DX2 !
! A112 A(41,54,57) 111.5486 estimate D2E/DX2 !
! A113 A(55,54,56) 107.0482 estimate D2E/DX2 !
! A114 A(55,54,57) 108.756 estimate D2E/DX2 !
! A115 A(56,54,57) 107.3186 estimate D2E/DX2 !
! A116 A(30,58,59) 110.7489 estimate D2E/DX2 !
! A117 A(30,58,60) 111.4442 estimate D2E/DX2 !
! A118 A(30,58,61) 111.4089 estimate D2E/DX2 !
! A119 A(59,58,60) 107.3504 estimate D2E/DX2 !
! A120 A(59,58,61) 107.1091 estimate D2E/DX2 !
! A121 A(60,58,61) 108.5897 estimate D2E/DX2 !
! A122 A(20,62,63) 111.4902 estimate D2E/DX2 !
! A123 A(20,62,64) 111.3573 estimate D2E/DX2 !
! A124 A(20,62,65) 110.8611 estimate D2E/DX2 !
! A125 A(63,62,64) 108.5358 estimate D2E/DX2 !
! A126 A(63,62,65) 107.5172 estimate D2E/DX2 !
! A127 A(64,62,65) 106.8839 estimate D2E/DX2 !
! A128 A(51,66,67) 111.4753 estimate D2E/DX2 !
! A129 A(51,66,68) 110.8029 estimate D2E/DX2 !
! A130 A(51,66,69) 111.3891 estimate D2E/DX2 !
! A131 A(67,66,68) 107.553 estimate D2E/DX2 !
! A132 A(67,66,69) 108.565 estimate D2E/DX2 !
! A133 A(68,66,69) 106.8615 estimate D2E/DX2 !
! A134 A(4,72,73) 113.6897 estimate D2E/DX2 !
! A135 A(4,72,74) 126.4292 estimate D2E/DX2 !
! A136 A(73,72,74) 119.8794 estimate D2E/DX2 !
! D1 D(11,1,5,4) 0.4342 estimate D2E/DX2 !
! D2 D(11,1,5,13) -177.9466 estimate D2E/DX2 !
! D3 D(12,1,5,4) 178.1387 estimate D2E/DX2 !
! D4 D(12,1,5,13) -0.242 estimate D2E/DX2 !
! D5 D(5,1,11,3) -1.115 estimate D2E/DX2 !
! D6 D(5,1,11,9) -170.2759 estimate D2E/DX2 !
! D7 D(12,1,11,3) -178.902 estimate D2E/DX2 !
! D8 D(12,1,11,9) 11.937 estimate D2E/DX2 !
! D9 D(5,1,12,2) 178.9926 estimate D2E/DX2 !
! D10 D(11,1,12,2) -3.5987 estimate D2E/DX2 !
! D11 D(10,2,6,8) 1.3736 estimate D2E/DX2 !
! D12 D(10,2,6,44) -177.8766 estimate D2E/DX2 !
! D13 D(12,2,6,8) -177.8156 estimate D2E/DX2 !
! D14 D(12,2,6,44) 2.9342 estimate D2E/DX2 !
! D15 D(6,2,10,7) -1.3787 estimate D2E/DX2 !
! D16 D(6,2,10,9) -176.2143 estimate D2E/DX2 !
! D17 D(12,2,10,7) 177.8265 estimate D2E/DX2 !
! D18 D(12,2,10,9) 2.9908 estimate D2E/DX2 !
! D19 D(6,2,12,1) 175.0806 estimate D2E/DX2 !
! D20 D(10,2,12,1) -3.9885 estimate D2E/DX2 !
! D21 D(11,3,4,5) -1.0808 estimate D2E/DX2 !
! D22 D(11,3,4,72) -179.6434 estimate D2E/DX2 !
! D23 D(23,3,4,5) 177.5623 estimate D2E/DX2 !
! D24 D(23,3,4,72) -1.0002 estimate D2E/DX2 !
! D25 D(4,3,11,1) 1.3442 estimate D2E/DX2 !
! D26 D(4,3,11,9) 169.6221 estimate D2E/DX2 !
! D27 D(23,3,11,1) -177.3481 estimate D2E/DX2 !
! D28 D(23,3,11,9) -9.0703 estimate D2E/DX2 !
! D29 D(4,3,23,24) -57.0363 estimate D2E/DX2 !
! D30 D(4,3,23,25) 121.5499 estimate D2E/DX2 !
! D31 D(11,3,23,24) 121.4253 estimate D2E/DX2 !
! D32 D(11,3,23,25) -59.9885 estimate D2E/DX2 !
! D33 D(3,4,5,1) 0.3721 estimate D2E/DX2 !
! D34 D(3,4,5,13) 178.5997 estimate D2E/DX2 !
! D35 D(72,4,5,1) 178.77 estimate D2E/DX2 !
! D36 D(72,4,5,13) -3.0024 estimate D2E/DX2 !
! D37 D(3,4,72,73) -5.0108 estimate D2E/DX2 !
! D38 D(3,4,72,74) 174.5022 estimate D2E/DX2 !
! D39 D(5,4,72,73) 176.7919 estimate D2E/DX2 !
! D40 D(5,4,72,74) -3.695 estimate D2E/DX2 !
! D41 D(1,5,13,14) -39.4935 estimate D2E/DX2 !
! D42 D(1,5,13,15) 138.3612 estimate D2E/DX2 !
! D43 D(4,5,13,14) 142.5683 estimate D2E/DX2 !
! D44 D(4,5,13,15) -39.577 estimate D2E/DX2 !
! D45 D(2,6,8,7) -0.8472 estimate D2E/DX2 !
! D46 D(2,6,8,33) -179.754 estimate D2E/DX2 !
! D47 D(44,6,8,7) 178.4065 estimate D2E/DX2 !
! D48 D(44,6,8,33) -0.5003 estimate D2E/DX2 !
! D49 D(2,6,44,45) 158.5947 estimate D2E/DX2 !
! D50 D(2,6,44,46) -22.4161 estimate D2E/DX2 !
! D51 D(8,6,44,45) -20.4962 estimate D2E/DX2 !
! D52 D(8,6,44,46) 158.4931 estimate D2E/DX2 !
! D53 D(10,7,8,6) 0.0291 estimate D2E/DX2 !
! D54 D(10,7,8,33) 178.9714 estimate D2E/DX2 !
! D55 D(34,7,8,6) 179.9483 estimate D2E/DX2 !
! D56 D(34,7,8,33) -1.1095 estimate D2E/DX2 !
! D57 D(8,7,10,2) 0.8415 estimate D2E/DX2 !
! D58 D(8,7,10,9) 175.1072 estimate D2E/DX2 !
! D59 D(34,7,10,2) -179.0745 estimate D2E/DX2 !
! D60 D(34,7,10,9) -4.8088 estimate D2E/DX2 !
! D61 D(8,7,34,35) 150.1623 estimate D2E/DX2 !
! D62 D(8,7,34,36) -27.623 estimate D2E/DX2 !
! D63 D(10,7,34,35) -29.9333 estimate D2E/DX2 !
! D64 D(10,7,34,36) 152.2814 estimate D2E/DX2 !
! D65 D(11,9,10,2) 4.1939 estimate D2E/DX2 !
! D66 D(11,9,10,7) -169.3442 estimate D2E/DX2 !
! D67 D(70,9,10,2) 124.6811 estimate D2E/DX2 !
! D68 D(70,9,10,7) -48.857 estimate D2E/DX2 !
! D69 D(71,9,10,2) -112.4592 estimate D2E/DX2 !
! D70 D(71,9,10,7) 74.0028 estimate D2E/DX2 !
! D71 D(10,9,11,1) -11.0495 estimate D2E/DX2 !
! D72 D(10,9,11,3) -177.8099 estimate D2E/DX2 !
! D73 D(70,9,11,1) -130.0258 estimate D2E/DX2 !
! D74 D(70,9,11,3) 63.2138 estimate D2E/DX2 !
! D75 D(71,9,11,1) 107.9107 estimate D2E/DX2 !
! D76 D(71,9,11,3) -58.8497 estimate D2E/DX2 !
! D77 D(5,13,14,16) 178.1868 estimate D2E/DX2 !
! D78 D(5,13,14,17) -2.8171 estimate D2E/DX2 !
! D79 D(15,13,14,16) 0.2497 estimate D2E/DX2 !
! D80 D(15,13,14,17) 179.2458 estimate D2E/DX2 !
! D81 D(5,13,15,18) -177.351 estimate D2E/DX2 !
! D82 D(5,13,15,19) 1.6629 estimate D2E/DX2 !
! D83 D(14,13,15,18) 0.5601 estimate D2E/DX2 !
! D84 D(14,13,15,19) 179.574 estimate D2E/DX2 !
! D85 D(13,14,16,20) -0.5842 estimate D2E/DX2 !
! D86 D(13,14,16,21) 179.2083 estimate D2E/DX2 !
! D87 D(17,14,16,20) -179.5769 estimate D2E/DX2 !
! D88 D(17,14,16,21) 0.2156 estimate D2E/DX2 !
! D89 D(13,15,18,20) -1.0614 estimate D2E/DX2 !
! D90 D(13,15,18,22) 178.8359 estimate D2E/DX2 !
! D91 D(19,15,18,20) 179.9271 estimate D2E/DX2 !
! D92 D(19,15,18,22) -0.1756 estimate D2E/DX2 !
! D93 D(14,16,20,18) 0.103 estimate D2E/DX2 !
! D94 D(14,16,20,62) 179.0492 estimate D2E/DX2 !
! D95 D(21,16,20,18) -179.6894 estimate D2E/DX2 !
! D96 D(21,16,20,62) -0.7431 estimate D2E/DX2 !
! D97 D(15,18,20,16) 0.7153 estimate D2E/DX2 !
! D98 D(15,18,20,62) -178.235 estimate D2E/DX2 !
! D99 D(22,18,20,16) -179.182 estimate D2E/DX2 !
! D100 D(22,18,20,62) 1.8677 estimate D2E/DX2 !
! D101 D(16,20,62,63) 18.3125 estimate D2E/DX2 !
! D102 D(16,20,62,64) 139.6982 estimate D2E/DX2 !
! D103 D(16,20,62,65) -101.4372 estimate D2E/DX2 !
! D104 D(18,20,62,63) -162.7747 estimate D2E/DX2 !
! D105 D(18,20,62,64) -41.3891 estimate D2E/DX2 !
! D106 D(18,20,62,65) 77.4756 estimate D2E/DX2 !
! D107 D(3,23,24,26) 179.0042 estimate D2E/DX2 !
! D108 D(3,23,24,27) -2.9333 estimate D2E/DX2 !
! D109 D(25,23,24,26) 0.3747 estimate D2E/DX2 !
! D110 D(25,23,24,27) 178.4372 estimate D2E/DX2 !
! D111 D(3,23,25,28) -178.1265 estimate D2E/DX2 !
! D112 D(3,23,25,29) 1.5149 estimate D2E/DX2 !
! D113 D(24,23,25,28) 0.4806 estimate D2E/DX2 !
! D114 D(24,23,25,29) -179.8779 estimate D2E/DX2 !
! D115 D(23,24,26,30) -1.0434 estimate D2E/DX2 !
! D116 D(23,24,26,31) 178.7975 estimate D2E/DX2 !
! D117 D(27,24,26,30) -179.1012 estimate D2E/DX2 !
! D118 D(27,24,26,31) 0.7397 estimate D2E/DX2 !
! D119 D(23,25,28,30) -0.6949 estimate D2E/DX2 !
! D120 D(23,25,28,32) 179.3912 estimate D2E/DX2 !
! D121 D(29,25,28,30) 179.6651 estimate D2E/DX2 !
! D122 D(29,25,28,32) -0.2487 estimate D2E/DX2 !
! D123 D(24,26,30,28) 0.8237 estimate D2E/DX2 !
! D124 D(24,26,30,58) -178.217 estimate D2E/DX2 !
! D125 D(31,26,30,28) -179.0169 estimate D2E/DX2 !
! D126 D(31,26,30,58) 1.9424 estimate D2E/DX2 !
! D127 D(25,28,30,26) 0.0426 estimate D2E/DX2 !
! D128 D(25,28,30,58) 179.0818 estimate D2E/DX2 !
! D129 D(32,28,30,26) 179.9563 estimate D2E/DX2 !
! D130 D(32,28,30,58) -1.0045 estimate D2E/DX2 !
! D131 D(26,30,58,59) 84.5573 estimate D2E/DX2 !
! D132 D(26,30,58,60) -156.0088 estimate D2E/DX2 !
! D133 D(26,30,58,61) -34.5501 estimate D2E/DX2 !
! D134 D(28,30,58,59) -94.4524 estimate D2E/DX2 !
! D135 D(28,30,58,60) 24.9815 estimate D2E/DX2 !
! D136 D(28,30,58,61) 146.4403 estimate D2E/DX2 !
! D137 D(7,34,35,37) -178.0308 estimate D2E/DX2 !
! D138 D(7,34,35,38) -0.0768 estimate D2E/DX2 !
! D139 D(36,34,35,37) -0.2333 estimate D2E/DX2 !
! D140 D(36,34,35,38) 177.7207 estimate D2E/DX2 !
! D141 D(7,34,36,39) 178.9532 estimate D2E/DX2 !
! D142 D(7,34,36,40) -3.0353 estimate D2E/DX2 !
! D143 D(35,34,36,39) 1.0372 estimate D2E/DX2 !
! D144 D(35,34,36,40) 179.0488 estimate D2E/DX2 !
! D145 D(34,35,37,41) -0.7229 estimate D2E/DX2 !
! D146 D(34,35,37,42) 178.8187 estimate D2E/DX2 !
! D147 D(38,35,37,41) -178.682 estimate D2E/DX2 !
! D148 D(38,35,37,42) 0.8596 estimate D2E/DX2 !
! D149 D(34,36,39,41) -0.9069 estimate D2E/DX2 !
! D150 D(34,36,39,43) 179.1131 estimate D2E/DX2 !
! D151 D(40,36,39,41) -178.9294 estimate D2E/DX2 !
! D152 D(40,36,39,43) 1.0906 estimate D2E/DX2 !
! D153 D(35,37,41,39) 0.8628 estimate D2E/DX2 !
! D154 D(35,37,41,54) -178.3152 estimate D2E/DX2 !
! D155 D(42,37,41,39) -178.678 estimate D2E/DX2 !
! D156 D(42,37,41,54) 2.144 estimate D2E/DX2 !
! D157 D(36,39,41,37) -0.0496 estimate D2E/DX2 !
! D158 D(36,39,41,54) 179.1274 estimate D2E/DX2 !
! D159 D(43,39,41,37) 179.9304 estimate D2E/DX2 !
! D160 D(43,39,41,54) -0.8927 estimate D2E/DX2 !
! D161 D(37,41,54,55) -33.8918 estimate D2E/DX2 !
! D162 D(37,41,54,56) 85.0199 estimate D2E/DX2 !
! D163 D(37,41,54,57) -155.6475 estimate D2E/DX2 !
! D164 D(39,41,54,55) 146.9585 estimate D2E/DX2 !
! D165 D(39,41,54,56) -94.1297 estimate D2E/DX2 !
! D166 D(39,41,54,57) 25.2028 estimate D2E/DX2 !
! D167 D(6,44,45,47) 179.193 estimate D2E/DX2 !
! D168 D(6,44,45,48) -2.2667 estimate D2E/DX2 !
! D169 D(46,44,45,47) 0.1549 estimate D2E/DX2 !
! D170 D(46,44,45,48) 178.6952 estimate D2E/DX2 !
! D171 D(6,44,46,49) -179.0894 estimate D2E/DX2 !
! D172 D(6,44,46,50) 0.4005 estimate D2E/DX2 !
! D173 D(45,44,46,49) -0.0794 estimate D2E/DX2 !
! D174 D(45,44,46,50) 179.4105 estimate D2E/DX2 !
! D175 D(44,45,47,51) -0.0421 estimate D2E/DX2 !
! D176 D(44,45,47,52) 179.6514 estimate D2E/DX2 !
! D177 D(48,45,47,51) -178.589 estimate D2E/DX2 !
! D178 D(48,45,47,52) 1.1044 estimate D2E/DX2 !
! D179 D(44,46,49,51) -0.1111 estimate D2E/DX2 !
! D180 D(44,46,49,53) 179.4184 estimate D2E/DX2 !
! D181 D(50,46,49,51) -179.5978 estimate D2E/DX2 !
! D182 D(50,46,49,53) -0.0682 estimate D2E/DX2 !
! D183 D(45,47,51,49) -0.1457 estimate D2E/DX2 !
! D184 D(45,47,51,66) 179.0564 estimate D2E/DX2 !
! D185 D(52,47,51,49) -179.839 estimate D2E/DX2 !
! D186 D(52,47,51,66) -0.6368 estimate D2E/DX2 !
! D187 D(46,49,51,47) 0.2222 estimate D2E/DX2 !
! D188 D(46,49,51,66) -178.9764 estimate D2E/DX2 !
! D189 D(53,49,51,47) -179.3068 estimate D2E/DX2 !
! D190 D(53,49,51,66) 1.4946 estimate D2E/DX2 !
! D191 D(47,51,66,67) 163.4308 estimate D2E/DX2 !
! D192 D(47,51,66,68) -76.8232 estimate D2E/DX2 !
! D193 D(47,51,66,69) 41.9959 estimate D2E/DX2 !
! D194 D(49,51,66,67) -17.3966 estimate D2E/DX2 !
! D195 D(49,51,66,68) 102.3494 estimate D2E/DX2 !
! D196 D(49,51,66,69) -138.8315 estimate D2E/DX2 !
--------------------------------------------------------------------------------
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06
Number of steps in this run= 422 maximum allowed number of steps= 444.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Stoichiometry C37H30BF2N3O
Framework group C1[X(C37H30BF2N3O)]
Deg. of freedom 216
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 -0.648507 -1.010723 0.025269
2 6 0 -0.645593 1.286644 0.049371
3 6 0 1.072090 -2.424041 -0.081026
4 6 0 -0.121292 -3.213659 -0.036441
5 6 0 -1.224329 -2.317196 0.037255
6 6 0 -1.223564 2.618176 -0.031660
7 6 0 1.063247 2.727687 0.050745
8 6 0 -0.139839 3.483731 -0.041101
9 5 0 1.686747 0.134630 0.126174
10 7 0 0.751964 1.395138 0.117398
11 7 0 0.744534 -1.106406 -0.062321
12 7 0 -1.308523 0.148676 0.043796
13 6 0 -2.663428 -2.575701 0.077755
14 6 0 -3.511760 -1.781362 0.878690
15 6 0 -3.257460 -3.587274 -0.706921
16 6 0 -4.888657 -1.995983 0.894896
17 1 0 -3.079311 -1.000739 1.504436
18 6 0 -4.634415 -3.781949 -0.695961
19 1 0 -2.629197 -4.211773 -1.340514
20 6 0 -5.479488 -2.997390 0.109463
21 1 0 -5.519952 -1.373750 1.534906
22 1 0 -5.069228 -4.560710 -1.328500
23 6 0 2.457828 -2.922454 -0.110793
24 6 0 2.923410 -3.769163 0.913682
25 6 0 3.334295 -2.597199 -1.161524
26 6 0 4.225331 -4.264738 0.887526
27 1 0 2.266689 -4.012822 1.751381
28 6 0 4.628640 -3.113447 -1.185804
29 1 0 2.993962 -1.941929 -1.962877
30 6 0 5.100536 -3.954557 -0.165873
31 1 0 4.570633 -4.904261 1.703939
32 1 0 5.290424 -2.856024 -2.016926
33 1 0 -0.174925 4.567845 -0.090434
34 6 0 2.396496 3.319096 0.066251
35 6 0 3.501116 2.742370 0.729389
36 6 0 2.589216 4.562447 -0.579470
37 6 0 4.735153 3.383157 0.736369
38 1 0 3.379685 1.804391 1.268474
39 6 0 3.832185 5.184423 -0.578957
40 1 0 1.760636 5.028998 -1.114824
41 6 0 4.933163 4.609231 0.078077
42 1 0 5.569235 2.924464 1.273797
43 1 0 3.953886 6.137896 -1.098923
44 6 0 -2.639026 2.973774 -0.075497
45 6 0 -3.048594 4.274412 0.296361
46 6 0 -3.636129 2.069472 -0.499297
47 6 0 -4.386526 4.647297 0.249032
48 1 0 -2.307263 4.994026 0.649787
49 6 0 -4.974306 2.454351 -0.544392
50 1 0 -3.349479 1.062828 -0.801372
51 6 0 -5.380618 3.745060 -0.171072
52 1 0 -4.671661 5.659280 0.548735
53 1 0 -5.724183 1.735644 -0.886041
54 6 0 6.282841 5.272383 0.062366
55 1 0 6.831143 5.089100 0.997275
56 1 0 6.901153 4.872630 -0.758808
57 1 0 6.197757 6.357055 -0.090447
58 6 0 6.493866 -4.525085 -0.209504
59 1 0 6.490598 -5.529556 -0.664169
60 1 0 7.166819 -3.896335 -0.808785
61 1 0 6.916973 -4.628336 0.799819
62 6 0 -6.964550 -3.243419 0.142755
63 1 0 -7.505631 -2.383906 0.561770
64 1 0 -7.359280 -3.448451 -0.863257
65 1 0 -7.203229 -4.121528 0.765530
66 6 0 -6.830193 4.149110 -0.199811
67 1 0 -7.427728 3.459898 -0.811855
68 1 0 -7.257561 4.146985 0.816676
69 1 0 -6.954991 5.167557 -0.596268
70 9 0 2.611938 0.239518 -0.911329
71 9 0 2.333578 -0.006693 1.366647
72 6 0 -0.084541 -4.671389 -0.036361
73 1 0 0.940717 -5.094162 -0.162924
74 8 0 -1.046936 -5.426410 0.094606
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0769234 0.0615630 0.0351664
Standard basis: 6-311G(2d,p) (5D, 7F)
There are 1192 symmetry adapted basis functions of A symmetry.
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
1192 basis functions, 1912 primitive gaussians, 1280 cartesian basis functions
152 alpha electrons 152 beta electrons
nuclear repulsion energy 4924.8578643454 Hartrees.
NAtoms= 74 NActive= 74 NUniq= 74 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T
------------------------------------------------------------------------------
Polarizable Continuum Model (PCM)
=================================
Model : C-PCM.
Atomic radii : UFF (Universal Force Field).
Polarization charges : Total charges.
Charge compensation : None.
Solution method : Matrix inversion.
Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100).
Cavity algorithm : GePol (No added spheres)
Default sphere list used, NSphG= 74.
Lebedev-Laikov grids with approx. 5.0 points / Ang**2.
Smoothing algorithm: Karplus/York (Gamma=1.0000).
Polarization charges: spherical gaussians, with
point-specific exponents (IZeta= 3).
Self-potential: point-specific (ISelfS= 7).
Self-field : sphere-specific E.n sum rule (ISelfD= 2).
1st derivatives : Analytical E(r).r(x)/FMM algorithm (CHGder, D1EAlg=3).
Cavity 1st derivative terms included.
Solvent : Acetonitrile, Eps= 35.688000 Eps(inf)= 1.806874
------------------------------------------------------------------------------
One-electron integrals computed using PRISM.
NBasis= 1192 RedAO= T NBF= 1192
NBsUse= 1192 1.00D-06 NBFU= 1192
Harris functional with IExCor= 1009 diagonalized for initial guess.
ExpMin= 9.89D-02 ExpMax= 1.14D+04 ExpMxC= 1.72D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1
ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
I1Cent= 4 NGrid= 0.
Petite list used in FoFCou.
Initial guess orbital symmetries:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A)
The electronic state of the initial guess is 1-A.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
EnCoef did 2 forward-backward iterations
Error on total polarization charges = 0.01983
SCF Done: E(RPBE-PBE) = -1890.44053763 A.U. after 18 cycles
Convg = 0.2788D-08 -V/T = 2.0035
ExpMin= 9.89D-02 ExpMax= 1.14D+04 ExpMxC= 1.72D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2
ScaDFX= 1.000000 1.000000 1.000000 1.000000
Range of M.O.s used for correlation: 45 1192
NBasis= 1192 NAE= 152 NBE= 152 NFC= 44 NFV= 0
NROrb= 1148 NOA= 108 NOB= 108 NVA= 1040 NVB= 1040
**** Warning!!: The largest alpha MO coefficient is 0.18371229D+02
**** Warning!!: The smallest alpha delta epsilon is 0.45579970D-01
Would need an additional337324100000 words for in-memory AO integral storage.
NEqPCM: Using equilibrium solvation (IEInf=0, Eps= 35.6880, EpsInf= 1.8069)
Orbital symmetries:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A)
24 initial guesses have been made.
Convergence on wavefunction: 0.000001000000000
Iteration 1 Dimension 24 NMult 24
CISAX will form 12 AO SS matrices at one time.
New state 1 was old state 2
New state 2 was old state 1
New state 3 was old state 4
New state 4 was old state 3
New state 5 was old state 6
New state 6 was old state 8
Iteration 2 Dimension 48 NMult 48
New state 3 was old state 4
New state 4 was old state 3
Iteration 3 Dimension 54 NMult 54
Iteration 4 Dimension 60 NMult 60
Iteration 5 Dimension 66 NMult 66
Iteration 6 Dimension 72 NMult 72
Iteration 7 Dimension 78 NMult 78
Iteration 8 Dimension 84 NMult 84
Iteration 9 Dimension 90 NMult 90
Iteration 10 Dimension 96 NMult 96
Iteration 11 Dimension 102 NMult 102
Iteration 12 Dimension 108 NMult 108
Iteration 13 Dimension 114 NMult 114
Iteration 14 Dimension 120 NMult 120
Iteration 15 Dimension 126 NMult 126
Iteration 16 Dimension 132 NMult 132
Iteration 17 Dimension 138 NMult 138
Iteration 18 Dimension 144 NMult 144
Iteration 19 Dimension 150 NMult 150
Iteration 20 Dimension 156 NMult 156
Iteration 21 Dimension 162 NMult 162
Iteration 22 Dimension 168 NMult 168
Iteration 23 Dimension 174 NMult 174
Iteration 24 Dimension 180 NMult 180
Iteration 25 Dimension 186 NMult 186
Iteration 26 Dimension 192 NMult 192
Iteration 27 Dimension 198 NMult 198
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 12 NMult 210
Iteration 2 Dimension 18 NMult 216
Iteration 3 Dimension 24 NMult 222
Iteration 4 Dimension 30 NMult 228
Iteration 5 Dimension 36 NMult 234
Iteration 6 Dimension 42 NMult 240
Iteration 7 Dimension 48 NMult 246
Iteration 8 Dimension 54 NMult 252
Iteration 9 Dimension 60 NMult 258
Iteration 10 Dimension 66 NMult 264
Iteration 11 Dimension 72 NMult 270
Iteration 12 Dimension 78 NMult 276
Iteration 13 Dimension 84 NMult 282
Iteration 14 Dimension 90 NMult 288
Iteration 15 Dimension 96 NMult 294
Iteration 16 Dimension 102 NMult 300
Iteration 17 Dimension 108 NMult 306
Iteration 18 Dimension 114 NMult 312
Iteration 19 Dimension 120 NMult 318
Iteration 20 Dimension 126 NMult 324
Iteration 21 Dimension 132 NMult 330
Iteration 22 Dimension 138 NMult 336
Iteration 23 Dimension 144 NMult 342
Iteration 24 Dimension 150 NMult 348
Iteration 25 Dimension 156 NMult 354
Iteration 26 Dimension 162 NMult 360
Iteration 27 Dimension 168 NMult 366
Iteration 28 Dimension 174 NMult 372
Iteration 29 Dimension 180 NMult 378
Iteration 30 Dimension 186 NMult 384
Iteration 31 Dimension 192 NMult 390
Iteration 32 Dimension 198 NMult 396
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 12 NMult 408
Iteration 2 Dimension 18 NMult 414
Iteration 3 Dimension 24 NMult 420
Iteration 4 Dimension 30 NMult 426
Iteration 5 Dimension 36 NMult 432
Iteration 6 Dimension 42 NMult 438
Iteration 7 Dimension 48 NMult 444
Iteration 8 Dimension 54 NMult 450
Iteration 9 Dimension 60 NMult 456
Iteration 10 Dimension 66 NMult 462
Iteration 11 Dimension 72 NMult 468
Iteration 12 Dimension 78 NMult 474
Iteration 13 Dimension 84 NMult 480
Iteration 14 Dimension 90 NMult 486
Iteration 15 Dimension 96 NMult 492
Iteration 16 Dimension 102 NMult 498
Iteration 17 Dimension 108 NMult 504
Iteration 18 Dimension 114 NMult 510
Iteration 19 Dimension 120 NMult 516
Iteration 20 Dimension 126 NMult 522
Iteration 21 Dimension 132 NMult 528
Iteration 22 Dimension 138 NMult 534
Iteration 23 Dimension 144 NMult 540
Iteration 24 Dimension 150 NMult 546
Iteration 25 Dimension 156 NMult 552
Iteration 26 Dimension 162 NMult 558
Iteration 27 Dimension 168 NMult 564
Iteration 28 Dimension 174 NMult 570
Iteration 29 Dimension 180 NMult 576
Iteration 30 Dimension 186 NMult 582
Iteration 31 Dimension 192 NMult 588
Iteration 32 Dimension 198 NMult 594
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 12 NMult 606
Iteration 2 Dimension 18 NMult 612
Iteration 3 Dimension 24 NMult 618
Iteration 4 Dimension 30 NMult 624
Iteration 5 Dimension 36 NMult 630
Iteration 6 Dimension 42 NMult 636
Iteration 7 Dimension 48 NMult 642
Iteration 8 Dimension 54 NMult 648
Iteration 9 Dimension 60 NMult 654
Iteration 10 Dimension 66 NMult 660
Iteration 11 Dimension 72 NMult 666
Iteration 12 Dimension 78 NMult 672
Iteration 13 Dimension 84 NMult 678
Iteration 14 Dimension 90 NMult 684
Iteration 15 Dimension 96 NMult 690
Iteration 16 Dimension 102 NMult 696
Iteration 17 Dimension 108 NMult 702
Iteration 18 Dimension 114 NMult 708
Iteration 19 Dimension 120 NMult 714
Iteration 20 Dimension 126 NMult 720
Iteration 21 Dimension 132 NMult 726
Iteration 22 Dimension 138 NMult 732
Iteration 23 Dimension 144 NMult 738
Iteration 24 Dimension 150 NMult 744
Iteration 25 Dimension 156 NMult 750
Iteration 26 Dimension 162 NMult 756
Iteration 27 Dimension 168 NMult 762
Iteration 28 Dimension 174 NMult 768
Iteration 29 Dimension 180 NMult 774
Iteration 30 Dimension 186 NMult 780
Iteration 31 Dimension 191 NMult 785
Iteration 32 Dimension 196 NMult 790
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 12 NMult 802
Iteration 2 Dimension 18 NMult 808
Iteration 3 Dimension 24 NMult 814
Iteration 4 Dimension 30 NMult 820
Iteration 5 Dimension 36 NMult 826
Iteration 6 Dimension 42 NMult 832
Iteration 7 Dimension 48 NMult 838
Iteration 8 Dimension 54 NMult 844
Iteration 9 Dimension 60 NMult 850
Iteration 10 Dimension 66 NMult 856
Iteration 11 Dimension 72 NMult 862
Iteration 12 Dimension 78 NMult 868
Iteration 13 Dimension 84 NMult 874
Iteration 14 Dimension 90 NMult 880
Iteration 15 Dimension 96 NMult 886
Iteration 16 Dimension 102 NMult 892
Iteration 17 Dimension 108 NMult 898
Iteration 18 Dimension 114 NMult 904
Iteration 19 Dimension 120 NMult 910
Iteration 20 Dimension 126 NMult 916
Iteration 21 Dimension 132 NMult 922
Iteration 22 Dimension 138 NMult 928
Iteration 23 Dimension 144 NMult 934
Iteration 24 Dimension 150 NMult 940
Iteration 25 Dimension 156 NMult 946
Iteration 26 Dimension 161 NMult 951
Iteration 27 Dimension 167 NMult 957
Iteration 28 Dimension 173 NMult 963
Iteration 29 Dimension 178 NMult 968
Iteration 30 Dimension 182 NMult 972
Iteration 31 Dimension 186 NMult 976
Iteration 32 Dimension 190 NMult 980
Iteration 33 Dimension 194 NMult 984
Iteration 34 Dimension 198 NMult 988
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 10 NMult 998
Iteration 2 Dimension 16 NMult 1004
Iteration 3 Dimension 22 NMult 1010
Iteration 4 Dimension 28 NMult 1016
Iteration 5 Dimension 34 NMult 1022
Iteration 6 Dimension 40 NMult 1028
Iteration 7 Dimension 46 NMult 1034
Iteration 8 Dimension 52 NMult 1040
Iteration 9 Dimension 58 NMult 1046
Iteration 10 Dimension 64 NMult 1052
Iteration 11 Dimension 70 NMult 1058
Iteration 12 Dimension 76 NMult 1064
Iteration 13 Dimension 82 NMult 1070
Iteration 14 Dimension 88 NMult 1076
Iteration 15 Dimension 94 NMult 1082
Iteration 16 Dimension 100 NMult 1088
Iteration 17 Dimension 106 NMult 1094
Iteration 18 Dimension 112 NMult 1100
Iteration 19 Dimension 118 NMult 1106
Iteration 20 Dimension 124 NMult 1112
Iteration 21 Dimension 130 NMult 1118
Iteration 22 Dimension 136 NMult 1124
Iteration 23 Dimension 142 NMult 1130
Iteration 24 Dimension 148 NMult 1136
Iteration 25 Dimension 153 NMult 1141
Iteration 26 Dimension 159 NMult 1147
Iteration 27 Dimension 165 NMult 1153
Iteration 28 Dimension 171 NMult 1159
Iteration 29 Dimension 176 NMult 1164
Iteration 30 Dimension 180 NMult 1168
Iteration 31 Dimension 183 NMult 1171
Iteration 32 Dimension 185 NMult 1173
Iteration 33 Dimension 189 NMult 1177
Iteration 34 Dimension 192 NMult 1180
Iteration 35 Dimension 195 NMult 1183
Iteration 36 Dimension 199 NMult 1187
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 9 NMult 1196
Iteration 2 Dimension 15 NMult 1202
Iteration 3 Dimension 21 NMult 1208
Iteration 4 Dimension 27 NMult 1214
Iteration 5 Dimension 33 NMult 1220
Iteration 6 Dimension 39 NMult 1226
Iteration 7 Dimension 45 NMult 1232
Iteration 8 Dimension 51 NMult 1238
Iteration 9 Dimension 57 NMult 1244
Iteration 10 Dimension 63 NMult 1250
Iteration 11 Dimension 69 NMult 1256
Iteration 12 Dimension 75 NMult 1262
Iteration 13 Dimension 81 NMult 1268
Iteration 14 Dimension 87 NMult 1274
Iteration 15 Dimension 93 NMult 1280
Iteration 16 Dimension 99 NMult 1286
Iteration 17 Dimension 105 NMult 1292
Iteration 18 Dimension 111 NMult 1298
Iteration 19 Dimension 117 NMult 1304
Iteration 20 Dimension 123 NMult 1310
Iteration 21 Dimension 129 NMult 1316
Iteration 22 Dimension 135 NMult 1322
Iteration 23 Dimension 141 NMult 1328
Iteration 24 Dimension 147 NMult 1334
Iteration 25 Dimension 153 NMult 1340
Iteration 26 Dimension 159 NMult 1346
Iteration 27 Dimension 164 NMult 1351
Iteration 28 Dimension 168 NMult 1355
Iteration 29 Dimension 172 NMult 1359
Iteration 30 Dimension 175 NMult 1362
Iteration 31 Dimension 177 NMult 1364
Iteration 32 Dimension 178 NMult 1365
Iteration 33 Dimension 179 NMult 1366
Iteration 34 Dimension 181 NMult 1368
Iteration 35 Dimension 183 NMult 1370
Iteration 36 Dimension 185 NMult 1372
Iteration 37 Dimension 187 NMult 1374
Iteration 38 Dimension 189 NMult 1376
Iteration 39 Dimension 191 NMult 1378
Iteration 40 Dimension 193 NMult 1380
Iteration 41 Dimension 195 NMult 1382
Iteration 42 Dimension 197 NMult 1384
Iteration 43 Dimension 199 NMult 1386
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 8 NMult 1394
Iteration 2 Dimension 14 NMult 1400
Iteration 3 Dimension 20 NMult 1406
Iteration 4 Dimension 26 NMult 1412
Iteration 5 Dimension 32 NMult 1418
Iteration 6 Dimension 38 NMult 1424
Iteration 7 Dimension 44 NMult 1430
Iteration 8 Dimension 50 NMult 1436
Iteration 9 Dimension 56 NMult 1442
Iteration 10 Dimension 62 NMult 1448
Iteration 11 Dimension 68 NMult 1454
Iteration 12 Dimension 74 NMult 1460
Iteration 13 Dimension 80 NMult 1466
Iteration 14 Dimension 86 NMult 1472
Iteration 15 Dimension 92 NMult 1478
Iteration 16 Dimension 98 NMult 1484
Iteration 17 Dimension 104 NMult 1490
Iteration 18 Dimension 110 NMult 1496
Iteration 19 Dimension 116 NMult 1502
Iteration 20 Dimension 122 NMult 1508
Iteration 21 Dimension 128 NMult 1514
Iteration 22 Dimension 134 NMult 1520
Iteration 23 Dimension 140 NMult 1526
Iteration 24 Dimension 146 NMult 1532
Iteration 25 Dimension 151 NMult 1537
Iteration 26 Dimension 156 NMult 1542
Iteration 27 Dimension 161 NMult 1547
Iteration 28 Dimension 165 NMult 1551
Iteration 29 Dimension 168 NMult 1554
Iteration 30 Dimension 170 NMult 1556
Iteration 31 Dimension 172 NMult 1558
Iteration 32 Dimension 173 NMult 1559
Iteration 33 Dimension 174 NMult 1560
Iteration 34 Dimension 175 NMult 1561
Iteration 35 Dimension 176 NMult 1562
Iteration 36 Dimension 177 NMult 1563
Iteration 37 Dimension 179 NMult 1565
Iteration 38 Dimension 180 NMult 1566
Iteration 39 Dimension 182 NMult 1568
Iteration 40 Dimension 183 NMult 1569
Iteration 41 Dimension 185 NMult 1571
Iteration 42 Dimension 188 NMult 1574
Iteration 43 Dimension 190 NMult 1576
Iteration 44 Dimension 192 NMult 1578
Iteration 45 Dimension 194 NMult 1580
Iteration 46 Dimension 196 NMult 1582
Iteration 47 Dimension 199 NMult 1585
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 8 NMult 1593
Iteration 2 Dimension 14 NMult 1599
Iteration 3 Dimension 20 NMult 1605
Iteration 4 Dimension 26 NMult 1611
Iteration 5 Dimension 32 NMult 1617
Iteration 6 Dimension 38 NMult 1623
Iteration 7 Dimension 44 NMult 1629
Iteration 8 Dimension 50 NMult 1635
Iteration 9 Dimension 56 NMult 1641
Iteration 10 Dimension 62 NMult 1647
Iteration 11 Dimension 68 NMult 1653
Iteration 12 Dimension 74 NMult 1659
Iteration 13 Dimension 80 NMult 1665
Iteration 14 Dimension 86 NMult 1671
Iteration 15 Dimension 92 NMult 1677
Iteration 16 Dimension 98 NMult 1683
Iteration 17 Dimension 104 NMult 1689
Iteration 18 Dimension 110 NMult 1695
Iteration 19 Dimension 116 NMult 1701
Iteration 20 Dimension 122 NMult 1707
Iteration 21 Dimension 128 NMult 1713
Iteration 22 Dimension 134 NMult 1719
Iteration 23 Dimension 140 NMult 1725
Iteration 24 Dimension 146 NMult 1731
Iteration 25 Dimension 151 NMult 1736
Iteration 26 Dimension 156 NMult 1741
Iteration 27 Dimension 161 NMult 1746
Iteration 28 Dimension 163 NMult 1748
Iteration 29 Dimension 164 NMult 1749
Iteration 30 Dimension 166 NMult 1751
Iteration 31 Dimension 168 NMult 1753
Iteration 32 Dimension 170 NMult 1755
Iteration 33 Dimension 171 NMult 1756
Iteration 34 Dimension 172 NMult 1757
Iteration 35 Dimension 173 NMult 1758
Iteration 36 Dimension 175 NMult 1760
Iteration 37 Dimension 177 NMult 1762
Iteration 38 Dimension 180 NMult 1765
Iteration 39 Dimension 181 NMult 1766
Iteration 40 Dimension 183 NMult 1768
Iteration 41 Dimension 184 NMult 1769
Iteration 42 Dimension 185 NMult 1770
Iteration 43 Dimension 187 NMult 1772
Iteration 44 Dimension 189 NMult 1774
Iteration 45 Dimension 190 NMult 1775
Iteration 46 Dimension 192 NMult 1777
Iteration 47 Dimension 194 NMult 1779
Iteration 48 Dimension 196 NMult 1781
Iteration 49 Dimension 198 NMult 1783
Iteration 50 Dimension 200 NMult 1785
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 8 NMult 1793
Iteration 2 Dimension 14 NMult 1799
Iteration 3 Dimension 20 NMult 1805
Iteration 4 Dimension 26 NMult 1811
Iteration 5 Dimension 32 NMult 1817
Iteration 6 Dimension 38 NMult 1823
Iteration 7 Dimension 44 NMult 1829
Iteration 8 Dimension 50 NMult 1835
Iteration 9 Dimension 56 NMult 1841
Iteration 10 Dimension 62 NMult 1847
Iteration 11 Dimension 68 NMult 1853
Iteration 12 Dimension 74 NMult 1859
Iteration 13 Dimension 80 NMult 1865
Iteration 14 Dimension 86 NMult 1871
Iteration 15 Dimension 92 NMult 1877
Iteration 16 Dimension 98 NMult 1883
Iteration 17 Dimension 104 NMult 1889
Iteration 18 Dimension 110 NMult 1895
Iteration 19 Dimension 116 NMult 1901
Iteration 20 Dimension 122 NMult 1907
Iteration 21 Dimension 128 NMult 1913
Iteration 22 Dimension 134 NMult 1919
Iteration 23 Dimension 140 NMult 1925
Iteration 24 Dimension 146 NMult 1931
Iteration 25 Dimension 151 NMult 1936
Iteration 26 Dimension 155 NMult 1940
Iteration 27 Dimension 159 NMult 1944
Iteration 28 Dimension 160 NMult 1945
Iteration 29 Dimension 162 NMult 1947
Iteration 30 Dimension 164 NMult 1949
Iteration 31 Dimension 165 NMult 1950
Iteration 32 Dimension 166 NMult 1951
Iteration 33 Dimension 167 NMult 1952
Iteration 34 Dimension 168 NMult 1953
Iteration 35 Dimension 169 NMult 1954
Iteration 36 Dimension 170 NMult 1955
Iteration 37 Dimension 171 NMult 1956
Iteration 38 Dimension 173 NMult 1958
Iteration 39 Dimension 175 NMult 1960
Iteration 40 Dimension 177 NMult 1962
Iteration 41 Dimension 179 NMult 1964
Iteration 42 Dimension 181 NMult 1966
Iteration 43 Dimension 182 NMult 1967
Iteration 44 Dimension 183 NMult 1968
Iteration 45 Dimension 184 NMult 1969
Iteration 46 Dimension 185 NMult 1970
Iteration 47 Dimension 186 NMult 1971
Iteration 48 Dimension 188 NMult 1973
Iteration 49 Dimension 190 NMult 1975
Iteration 50 Dimension 192 NMult 1977
Iteration 51 Dimension 194 NMult 1979
Iteration 52 Dimension 195 NMult 1980
Iteration 53 Dimension 196 NMult 1981
Iteration 54 Dimension 199 NMult 1984
Davidson failed to converge within maximum sub-space dimensions.
Restart with updated initial guess:
Iteration 1 Dimension 8 NMult 1992
Iteration 2 Dimension 14 NMult 1998
Iteration 3 Dimension 20 NMult 2004
Iteration 4 Dimension 26 NMult 2010
Iteration 5 Dimension 32 NMult 2016
Iteration 6 Dimension 38 NMult 2022
Iteration 7 Dimension 44 NMult 2028
Can anyone tell me the solution?