If MD simulations converges to Boltzmann distributions ρ∼exp(−βϵ) after sufficiently long time why do we need MD simulations, as all the macroscopic quantities can be computed from the Boltzmann distribution itself. This question I am asking for short peptides of sequences of few amino acids.(tripeptide, tetrapeptide etc).
Article The intrinsic conformational propensities of the 20 naturall...
For instance in the given above (link) paper, they are using MD to generate Ramachandran distributions of conformations of pentapeptide at a constant temperature. So this should obey statistical mechanics. If it is so, then this should satisfy Boltzman distributions.So I should be able to write down the distributions using boltzmann weight as follows,
ρ({ϕi,ψi})∼exp(−βV({ϕi,ψi}))
.Here, all set of Ramachandran angle coordinates of the pentapeptides is given by {ϕi,ψi}{ϕi,ψi}.
Why should I run MD to get the same distributions?