My code is :
function RunlogisticOscilfisher
omega=1;
N0=1;
k = 10;
A = 1;
p0 = .1;
tspan=(0:0.1:10);
[t,p] = ode45(@logisticOscilnumerical,tspan,p0,[],omega,k,N0);
figure (1)
plot(t,p)
P = @(T) interp1(t,p,T)
f = @(t) ( ( A.*( ( N0.* (sin(omega.*t)).^2 .*(1-(2.*P(t)./k))+(omega.*cos(omega.*t) ) ).^2 ) ./( (N0).^2.*(sin(omega.*t)).^4.*((P(t)-(P(t).^2./k)).^2 ) ) ) ) ;
I1 = integral( f, 1,2,'ArrayValued',true)./2
I2 = integral( f, 1,4,'ArrayValued',true)./4
I3 = integral( f, 1,6,'ArrayValued',true)./6
I4 = integral( f, 1,8,'ArrayValued',true)./8
I5 = integral( f, 1,10,'ArrayValued',true)./10
I=[I1,I2,I3,I4,I5]
T=[2,4,6,8,10]
figure(2)
plot(T,I./10.^34)
title('The Fisher Information with time')
xlabel('Time')
ylabel('Fisher Information')
1;
% function dpdt = logisticOscilnumerical(t,p,omega,k,N0)
% dpdt = N0*sin(omega*t)*p*(1-p/k);
% end