I am going to calculate the free binding energy of two proteins which are in a complex. I have used the umbrella sampling for this purpose, but after pulling, the two proteins do not separate completely (see figure). I have changed the "pull_coord1_k" from 1000 kJ mol^-1 nm^-2 to 20000 besides I have ignored the line: "Periodic boundary conditions are on in all directions" to have non periodic conditions, but it does not solve the problem (see the pulling parameters below). Would any one help me with this problem?
Thanks
Mahboobe
title = Umbrella pulling simulation
define = -DPOSRES_B
; Run parameters
integrator = md
dt = 0.002
tinit = 0
nsteps = 2000000 ; 500 ps
nstcomm = 10
; Output parameters
nstxout = 5000 ; every 10 ps
nstvout = 5000
nstfout = 500
nstxtcout = 500 ; every 1 ps
nstenergy = 500
; Bond parameters
constraint_algorithm = lincs
constraints = all-bonds
continuation = yes ; continuing from NPT
; Single-range cutoff scheme
cutoff-scheme = Verlet
nstlist = 20
ns_type = grid
rlist = 1.4
rcoulomb = 1.4
rvdw = 1.4
; PME electrostatics parameters
coulombtype = PME
fourierspacing = 0.12
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
pme_order = 4
ewald_rtol = 1e-5
optimize_fft = yes
; Berendsen temperature coupling is on in two groups
Tcoupl = Nose-Hoover
tc_grps = Protein Non-Protein
tau_t = 1.0 1.0
ref_t = 310 310
; Pressure coupling is on
Pcoupl = Parrinello-Rahman
pcoupltype = isotropic
tau_p = 1.0
compressibility = 4.5e-5
ref_p = 1.0
refcoord_scaling = com
; Generate velocities is off
gen_vel = no
; Periodic boundary conditions are on in all directions
pbc = xyz
; Long-range dispersion correction
DispCorr = EnerPres
; Pull code
pull = yes
pull_ncoords = 1 ; only one reaction coordinate
pull_ngroups = 2 ; two groups defining one reaction coordinate
pull_group1_name = Chain_A
pull_group2_name = Chain_B
pull_coord1_type = umbrella ; harmonic potential
pull_coord1_geometry = distance ; simple distance increase
pull_coord1_dim = N N Y
pull_coord1_groups = 1 2
pull_coord1_start = yes ; define initial COM distance > 0
pull_coord1_rate = 0.01 ; 0.01 nm per ps = 10 nm per ns
pull_coord1_k = 1000 ; kJ mol^-1 nm^-2