1) There is some tradition in philosophy of mathematics starting at the late 19th century and culminating in the crisis of foundations at the beginning of the 20th century. Names here are Zermelo, Frege, Whitehead and Russel, Cantor, Brouwer, Hilbert, Gödel, Cavaillès, and some more. At that time mathematics was already focused on itself, separated from general rationalist philosophy and epistemology, from a philosophy of the cosmos and the spirit.

2) Stepping backwards in time we have the great “rationalist” philosophers of the 17th, 18th, 19th century: Descartes, Leibniz, Malebranche, Spinoza, Hegel proposing a global view of the universe in which the subject, trying to understand his situation, is immersed.

3) Still making a big step backwards in time, we have the philosophers of the late antiquity and the beginning of our era (Greek philosophy, Neoplatonist schools, oriental philosophies). These should not be left out from our considerations.

4) Returning to the late 20th century we see inside mathematics appears the foundation (Eilenberg, Lavwere, Grothendieck, Maclane,…) of Category theory, which is in some sense a transversal theory inside mathematics. Among its basic principles are the notions of object, arrow, functor, on which then are founded adjunctions, (co-)limits, monads, and more evolved concepts.

Do you think these principles have their signification a) for science b) the rationalist philosophies we described before, and ultimately c) for more general philosophies of the cosmos?

Examples: The existence of an adjunction of two functors could have a meaning in physics e.g.. The existence of a natural numbers - object known from topos theory could have philosophical consequences. (cf. Immanuel Kant, Antinomien der reinen Vernunft).

Similar questions and discussions