I am starting to simulate the anti-reflection coating (ARC) for solar cells but I found some problems that I can't answer:

1, For solar cell without ARC, I tried to put the light source below (0.01 nm) the surface of the solar cell. But the performances are still the same. Does this mean there are no reflection on the silicon surface?

2, I tried to use different thickness of Si3N4 as ARC. For convenience I ignored the absorption of Si3N4. When I put the light source above the ARC, the performance decrease about 10%~15% mainly due to Jsc decrease. When I put the light source below the surface of Si3N4, the performance barely changes. I assume that means Si3N4 reflected about 10% of light but didn't help with the anti-reflection (many thickness tested from 60 to 100 nm).

My sdevice code is showing below.

File {

* input files:

Grid= "n@previous@_msh.tdr" #

Parameter= "@parameter@"

PMIPath = "./pmi/"

#OptGenTransientScaling= "./mesh/spettri/time.txt"

illuminationSpectrum ="./mesh/spettri/am15g.txt"

* output files:

Plot= "@tdrdat@"

Current="@plot@"

Output= "@log@"

} # END FILE

Electrode {

{ Name="top" Voltage=0.0 }

{ Name="bottom" Voltage=0.0 }

}

Physics{

Temperature= 300

Fermi

AreaFactcor=1e9

Mobility (constantMobility) #Arora

Recombination(SRH(DopingDependence) Auger)

EffectiveIntrinsicDensity (BandGapNarrowing(SlotBoom))

}

RayTraceBC {

{ Name= "top" transmittivity=1 } #

{ Name= "bottom" reflectivity= 0 transmittivity= 1 } #

}

############################ OTTICA ########################

Physics {

Optics (

ComplexRefractiveIndex (WavelengthDep(real imag))

OpticalGeneration (

QuantumYield (StepFunction(EffectiveBandgap))

ComputeFromSpectrum()

) # end Opticalgeneration

Excitation

(

Theta= 0 * Normal incidence

Polarization= 0.5 * Unpolarized light

Window ("L1")

(

Origin = ( 0 ,-205)

Line (

X1 = 0

X2 = 10000

) * end Line

) * end window

) * end Excitation

OpticalSolver (

Raytracing (

MinIntensity = 1e-14

RayDistribution(

Mode= AutoPopulate

NumberOfRays= 500

)

) *end Raytracing

) * end OpticalSolver

) #end optics

} #Physics

############################### FINE OTTICA ###################################

Plot {

ComplexRefractiveIndex QuantumYield AbsorbedPhotonDensity

SRHRecombination SurfaceRecombination RadiativeRecombination

eBand2BandGeneration TotalRecombination

OpticalIntensity Opticalgeneration OpticalField

CurrentPotential Potential ElectricField

SpaceCharge eDensity hTrappedCharge

current/Vector hCurrent/Vector eCurrent/Vector hMobility eMobility

eVelocity hVelocity eQuasiFermiEnergy hQuasiFermiEnergy

Doping DonorConcentration AcceptorConcentration

BandGap EffectiveBandGap ValenceBandEnergy ConductionBandEnergy

hEnormal hEparallel hGradQuasiFermi eGradQuasiFermi

# eTrappedCharge hTrappedCharge hInterfaceTrappedCharge eInterfaceTrappedCharge

eLifetime hLifetime

}

CurrentPlot {

AbsorbedPhotonDensity(Integrate(Semiconductor))

OpticalGeneration(Integrate(Semiconductor))

SRH (Integrate(Semiconductor))

Auger(Integrate(Semiconductor))

Radiative (Integrate(Semiconductor))

}

######## MATH ######

Math {

Notdamped=100

SubMethod=ParDiSo

Method=Blocked

ExitOnFailure

Iterations= 300

Extrapolate

Derivatives

RelErrControl

Digits= 5

}

########## SOLVE ###################

Solve {

NewCurrentPrefix= "./tmp_"

Poisson

Coupled {Poisson Electron Hole}

Plot (FilePrefix= "BandDiagram@node@")

NewCurrentPrefix=""

Quasistationary

(InitialStep=0.01 Maxstep=0.02 MinStep=0.02

Goal{name="top" voltage= 0.8}

plot{range = (0 1) Intervals = 10 } *5

)

{ Coupled { Poisson Hole Electron}}

} #end solve

More Shujian Xue's questions See All
Similar questions and discussions