23 October 2020 4 10K Report

Hello all,

I get a problem that needs all you support.

The question is that I need to transform a set of points on an arbitrary plane to 2-D dimensions, Oxy.  Also, the distance between points must be the same after transformation.

For example, a set of points are on the plane with normal vector v=(a; b; c). The angle between this normal vector and direction vector of Oz axis k=(0; 0; 1) is Theta calculated by

cos(Theta) = c/ sqrt(a^2+b^2+c^2);

The rotation axis u has to be orthogonal to vector k and vector v. 

vetor u = cross product of v,k = (u1,u2, 0).

Finally, the rotation matrix R is represented as the attached file.

According to the characteristic of the rotation matrix, the determinant of R must be equal to 1;

However, when I implemented this formula, the result of R in return is with det(R) !=1 which demonstrate something are incorrect. 

I attached a Matlab code file. If I choose the v=(1; 0 ; 1), the det(R) =0.6402. 

I attached 2 files ( in Matlab and Python ) for your reference.

Could you spend some time to check it and tell me why?

Thank you.

More Thanh Doan Le's questions See All
Similar questions and discussions