01 January 1970 21 1K Report

Are annihilation and pair production mutually inverse processes?

p+p− → γ γ'

“Annihilation can happen when all the quantum numbers of two colliding particles add up to zero. It might be electron on positron, proton on antiproton, neutron on antineutron, quark on antiquark etc. The force responsible depends on the possible interactions of the annihilating particles.” “Annihilation does not require the presence of other fields.”[x]

“In particular, one concludes that the two photons resulting from the annihilation of slow positrons in matter always have their planes of polarization perpendicular to each other. This has been pointed out by Wheeler who also proposed a possible experimental verification.”[2]

γ γ' →p+p−

It is often assumed that the concept of pair generation was first introduced by Breit and Wheeler, ω1+ω2→e+e-; however, in their paper [1], "pair generation" appears as an old term and cites the paper by Weizsäcker, CF, Z (1934), and Williams' formula。

Perrin (1933) (in French) was probably the first to introduce the concept of 'pair production'. He had a paper entitled "The possibility of materialization by the interaction of photons and electrons."

Regarding pair production: 1)At first sight light-light scattering seems to be impossible because in classical electrodynamics (linear Maxwell equations) the process does not occur. The resulting wave is everywhere given by the sum of the two incoming waves. 2)In quantum mechanics however the situation is quite different. Due to the uncertainty principle a photon of energy E can fluctuate into states of charged particle pairs (with mass mpair.)Experimentally it is very difficult to collide high energy photon beams. A very elegant way of avoiding this difficulty is again to use virtual particles, this time the quantum fluctuation of an electron into an electron photon state.[3]

The identification of pairs is usually a result of statistical findings[4][5][7][8][9]. e.g.

The identification of γ γ → pp events is mainly based on three artificial neural networks, used to separate antiprotons from e−, µ− and h−, where h− represents either a π− or K−[4]

QCD predictions for large-momentum transfer cross sections of the type ‘γγ→ BB' are given, for B and B' any members of the baryon octet or decuplet, and all possible helicity combinations for photons and baryons[8].

An electron enters the laser beam from the left, and collides with a laser photon to produce a high-energy gamma ray. The electron is deflected downwards. The gamma ray then collides with four or more laser photons to produce an electron-positron pair [9].

My questions:

1) The process of "pair production" and the process of annihilation of positive and negative particles are not mutually invertible. Just as the mass-energy equation is not reciprocal (E=mc^2, which is irreversible for photons), p+p- → γ γ' and γ γ' → p+p- are not γ γ' = p+p-. This is one of the differences between the mathematical equations and the physical equations.

(2) The process of "annihilation" does not require special conditions, while the process of " pair production" must require auxiliary conditions, the presence of other particles being necessary. What is the essential function of these auxiliary conditions? What are the conditions under which photons can "collide" and not just interfere?

3) Is the process of "pair production" one or two processes? Must the " pair of particles" be produced in pairs at the same time, or with equal probability for positive and negative particles? Or is it both. The literature [6] describes pairs of positive and negative particles as being produced simultaneously. This question is very important because it determines the mechanism of the "photon-particle" transition and even their structure.

(4) The colliding positive and negative particles do not necessarily annihilate into photons, but essentially depend on whether the magnitude of the energy reaches the energy value of a certain particle, e+e-→µ+µ-. Here is the root of the problem of the level difference of the three generations of particles implied, just as the energy level difference of orbiting electrons. Can quantum field theory give a concrete, or directional, explanation?

5) Where do the properties of the original positive and negative particles go after annihilation occurs? Charge, spin-magnetic moment, mass, and the spacetime field of the elementary particle. Can the origin of the properties be inferred from this? That is, if the properties are somehow conserved, then by reversibility, do the annihilated photons imply all the properties of the elementary particles. The total charge is conserved after the annihilation of the positive and negative electrons. But where does the positive charge go and where does the negative charge go? The following issues are involved here: https://www.researchgate.net/post/How_Fermions_combine_four_properties_in_one

[1]【Breit, G. and J. A. Wheeler (1934). "Collision of two light quanta." Physical Review 46(12): 1087】

[2]【Yang, C.-N. (1950). "Selection rules for the dematerialization of a particle into two photons." Physical Review 77(2): 242】

[3]【Berger, C. and W. Wagner (1987). "Photon photon reactions." Physics Reports 146(1-2): 1-134】

[4]【Achard, P., O. Adriani, M. Aguilar-Benitez and etl. (2003). "Proton–antiproton pair production in two-photon collisions at LEP." Physics Letters B 571(1-2): 11-20】

[5]【de Jeneret, J., V. Lemaitre, Y. Liu, S. Ovyn, T. Pierzchala, K. Piotrzkowski, X. Rouby, N. Schul and M. V. Donckt (2009). "High energy photon interactions at the LHC." arXiv preprint arXiv:0908.2020.】

[6]【Michaud, A. (2013). "The Mechanics of Electron-Positron Pair Creation in the 3-Spaces Model." International Journal of Engineering Research and Development 6: 2278-2800】* Researchgate Link:Article The Mechanics of Electron-Positron Pair Creation in the 3-Spaces Model

Minimum mass issues are involved here:

https://www.researchgate.net/post/Is_there_a_minimum_value_of_m_in_the_mass-energy_equation_Emc2

[7]【Klein, S. R. and P. Steinberg (2020). "Photonuclear and two-photon interactions at high-energy nuclear colliders." Annual Review of Nuclear and Particle Science 70: 323-354.】

[8]【Farrar, G. R., E. Maina and F. Neri (1985). "QCD Predictions for γγ Annihilation to Baryons." Nuclear Physics B 259(4): 702-720】

[9]【SLAC. (1970). "SLAC Experiment E144 Home Page." from https://www.slac.stanford.edu/exp/e144/.】

【Burke, D. L., R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis and W. Ragg (1997). "Positron Production in Multiphoton Light-by-Light Scattering." Physical Review Letters 79(9): 1626-1629】

【Schwarzschild, B. (1998). "Gamma Rays Create Matter Just by Plowing into Laser Light." Physics Today 51(2): 17-18】

————————————————————————————————————

2023-06-25

For the "pair production" experiment, the 2021 STAR Collaboration collectively published a paper "Measurement of e+ e- momentum and angular distributions from linearly polarized photon collisions" [4].

"At RHIC, scientists accelerate gold ions to 99.995% of the speed of light in two accelerator rings. If the speed is high enough, the strength of the circular magnetic field can be equal to the strength of the perpendicular electric field," Xu said. perpendicular electric and magnetic fields of equal strength is exactly what a photon is-a quantized "particle "So, when the ions are moving close to the speed of light, there are a bunch of photons surrounding the gold nucleus. As the ions pass one another without colliding, two photons (γ) from the electromagnetic cloud surrounding the ions can interact with each other to create a matter-antimatter pair: an electron (e-) and positron (e+) [5]. [The headline of the media report is more interesting [5][6][7]]

The history of the discovery of the physics of particle production and annihilation is presented in paper [1]; paper [3] is an analysis of the experimental phenomena by Anderson, the discoverer of positrons, in which four possibilities are proposed for each result, "pair production" being one of them. He finally determined that "pair production" was the real case. The results provided by André Michaud [9] should be similar [see his replies for details].

Comparing the STAR experiment [5] and the E114 experimental method [8], they produce photon "collisions" in a very different way. These two experiments are in turn different from experiments [2] and [3]. It is commonly believed that there are three possible interactions [4]: the collisions of two virtual photons (as calculated by Landau and Lifshitz, giving the total cross section for e+e- production predominantly at the pair threshold), of one virtual and one real photon (Bethe-Heitler process ), or of two real photons-the Breit-Wheeler process.

Question: Yang[1] and Andeson considered that Chao [2] and Anderson [3] are both electron pair generation processes, so is this a "photon-photon" collision "γγ → e+e- " process? If so, are the photons real or virtual, and what is the difference between them and the experiments [4][8]? If not, then there are no "photon-photon" collisions in the experiments of Chao [2] and Anderson [3], but only "photon-particle" collisions?

------------------------------------------------------------------------------

Reference:

[1] Li, B. A. and C. N. Yang (1989). "CY Chao, Pair creation and Pair Annihilation." International Journal of Modern Physics A 4(17): 4325-4335.

[2] Chao, C.-Y. (1930). "The absorption coefficient of hard γ-rays." Proceedings of the National Academy of Sciences 16(6): 431-433.

[3] Anderson, C. D. (1932). "The apparent existence of easily deflectable positives." Science 76(1967): 238-239.

[4] Adam, J., L. Adamczyk and etl. (2021). "Measurement of e+ e− momentum and angular distributions from linearly polarized photon collisions." Physical Review Letters 127(5): 052302:

[5] "Collisions of Light Produce Matter/Antimatter from Pure Energy": https://www.bnl.gov/newsroom/news.php?a=119023

[6] "Colliding photons were spotted making matter. But are the photons 'real' ? ": https://www.sciencenews.org/article/colliding-photons-matter-particle-physics#:~:text=In%20a%20demonstration%20of%20Einstein%E2%80%99s%20E%3Dmc%202%2C%20collisions,colliding%20particles%20of%20light%20create%20matter%20and%20antimatter.

[7] "Scientists Generate Matter Directly From Light – Physics Phenomena Predicted More Than 80 Years Ago": https://scitechdaily.com/scientists-generate-matter-directly-from-light-physics-phenomena-predicted-more-than-80-years-ago/?expand_article=1

[8] SLAC. (1970). "SLAC Experiment E144 Home Page." from https://www.slac.stanford.edu/exp/e144/.

[9] the FERMILAB experiment E632 bubble chamber picture;

More Chian Fan's questions See All
Similar questions and discussions