If gravity is caused by spacetime, then negative gravity should also be caused by spacetime. If general relativity is correct, then it should be able to describe all spacetime types and describe both positive and negative gravity.
In electromagnetic interactions there are two opposite forces, attractive and repulsive. The direction of the electric force depends on the identity of the "electric charge"; the direction of the magnetic force depends on the polarity of the "magnetic charge"*. However, in gravitational phenomena we only find attractive forces at the macroscopic level. This seems to be a flaw, somewhat similar to our inability to see antimatter (the gravitational force produced by antimatter is still positive). The concepts of "negative mass" and "negative energy" have been proposed and assumed to give rise to negative gravity [1][2][3]. This seems a somewhat absurd idea.
According to the interpretation of general relativity, gravity is a manifestation of the "curvature" of spacetime. So, if positive curvature of space-time produces "positive gravity", does negative curvature of space-time produce "negative gravity"? Under what conditions and in what places should such a situation leading to negative gravity occur?
Schwarzschild spacetime is a spherically symmetric solution of GR, can spherical symmetry be extended across the "event horizon" to r=0?
The best way to describe it is that we take the "event horizon" (r=2GM) as the dividing line, whose inner and outer spacetimes are symmetric. The external is gravitational force (pointing to the centre of the sphere), which tends to zero at r→∞,and is the macroscopic case; the internal is negative gravitational force (leaving the centre of the sphere), which tends to zero at r→0, and is the microscopic case(This looks like a very good match for elementary particles). However, physics suggests that the interior of a black hole is much more complex [4].
---------------------------------------------------------------------------------
Notes
* We don't think there's a magnetic monopole; Fan, C. (2023). If Magnetic Monopoles Would Annihilate Like Positive and Negative Electrons, Would Magnetism Still Exist? https://www.researchgate.net/post/NO23If_Magnetic_Monopoles_Would_Annihilate_Like_Positive_and_Negative_Electrons_Would_Magnetism_Still_Exist
---------------------------------------------------------------------------------
References
[1] Bondi, H. (1957). Negative mass in general relativity. Reviews of Modern Physics, 29(3), 423.
[2] Tiwari, R. N., Rao, J. R., & Ray, S. (1991). Gravitational sources of purely electromagnetic origin. Astrophysics and Space Science, 178(1), 119-132. https://doi.org/10.1007/BF00647119
[3] Parikh, M. K., & Wilczek, F. (2000). Hawking radiation as tunneling. Physical Review Letters, 85(24), 5042.
[4] Carroll, S. M. (1999). Lecture Notes on General Relativity. https://www.researchgate.net/publication/2354635_Lecture_Notes_on_General_Relativity