The energy operator ih∂/∂t and the momentum operator ihΔ or ih∂/∂x play a crucial role in the derivation of the Schrödinger equation, the Klein-Gordon equation, the Dirac equation, and other physics arguments.
The energy and momentum operators are not differential operators in the general sense; they do play a role in the derivation of the equations for the definition of energy and momentum.
However, we do not find any reasonable arguments or justifications for the use of such operators, and even their meaning can only be speculated from their names. It is used without explanation in textbooks.
The clues we found are:
1) In the literature [ Brown, L. M., A. Pais and B. Poppard (1995). Twentieth Centure Physics (I), Science Press.], "In March 1926, Schrödinger noticed that replacing the classical Hamiltonian function with a quantum mechanical operator, i.e., replacing the momentum p by a partial differentiation of h/2πi with position coordinates q and acting on the wave function, one also obtains the wave equation."
2) Gordon considered that the energy and momentum operators are the same in relativity and in non-relativism and therefore used in his relativistic wave equation (Gordon 1926).
(3) Dirac also used the energy and momentum operators in the relativistic equations with electron spins (Dirac 1928). Dirac called it the "Schrödinger representation", a self-adjoint differential operator or Hermitian operator (Dick 2012). (D).
Our questions are:
Why can this be used? Why is it possible to represent energy by time differential for wave functions and momentum by spatial differential for wave functions? Has this been historically argued or not?
Keywords: quantum mechanics, quantum field theory, quantum mechanical operators, energy operators, momentum operators, Schrödinger equation, Dirac equation.