Verapamil, A calcium channel blocker is used for prophylaxis of cluster headache. Verapamil is a vasodilator. What is its mechanism in preventing headache ?
According to classic theory, a migraine attack is initiated by cerebrovascular spasm followed by extracranial vasodilatation. Results of recent studies support this theory and suggest that cerebral blood flow during the initial phase of migraine symptoms is, in fact, decreased and this decrease probably leads to ischemia and hypoxia. Cellular hypoxia, in turn, can cause an increase in the flow of calcium from the extracellular fluid to the intracellular space, resulting in calcium overload and cellular dysfunction. Because calcium-channel blockers selectively inhibit the intracellular influx of calcium ions, investigators have begun evaluating the efficacy of these agents for migraine prophylaxis. Nimodipine, a calcium-channel blocker that exhibits selective effects on cerebral vessels, seems to offer protection against the cerebral ischemia and hypoxia presumed to be operative during migraine attacks.
The beneficial effects of these agents are attributed to their ability to inhibit the movement of calcium ions across the cell membranes. This prevents mechanical contraction of the muscle wall of the artery. There are several chemically distinct classes of compounds which share the ability to block the influx of calcium into various tissues. These compounds include nifedipine , verapamil and diltiazem. All of these medicines have a common effect on blood vessels and serve to prevent the arterial constriction associated with migraine side effects.
According to classic theory, a migraine attack is initiated by cerebrovascular spasm followed by extracranial vasodilatation. Results of recent studies support this theory and suggest that cerebral blood flow during the initial phase of migraine symptoms is, in fact, decreased and this decrease probably leads to ischemia and hypoxia. Cellular hypoxia, in turn, can cause an increase in the flow of calcium from the extracellular fluid to the intracellular space, resulting in calcium overload and cellular dysfunction. Because calcium-channel blockers selectively inhibit the intracellular influx of calcium ions, investigators have begun evaluating the efficacy of these agents for migraine prophylaxis. Nimodipine, a calcium-channel blocker that exhibits selective effects on cerebral vessels, seems to offer protection against the cerebral ischemia and hypoxia presumed to be operative during migraine attacks.