With the term “gravity”, we refer to the phenomenon of the gravitational interaction between material bodies.
How that phenomenon manifests itself in the case of the interaction of two mass particles at rest relative to an inertial reference frame (IRF) has, in the framework of classical physics, mathematically been described by Isaac Newton. And Oliver Heaviside, Oleg Jefimenko and others did the same in the case of bodies moving relative to an IRF. They described the effects of the kinematics of the gravitating objects assuming that the interaction between massive objects in space is possible through the mediation of “the gravitational field”.
In that context, the gravitational field is defined as a vector field having a field- and an induction-component (Eg and Bg) simultaneously created by their common sources: time-variable masses and mass flows. This vector-field (a mathematical construction) is an essential element of the mathematical description of the gravitational phenomena, and as such an element of our thinking about nature.
One cannot avoid the question of whether or not a physical entity is being described by the vector field (Eg, Bg) and what, if any, is the nature of that entity.
In the framework of “the theory of informatons”[1],[2],[3], the substance of the gravitational field – that in that context is considered as a substantial element of nature - is identified as “gravitational information” or g-information” i.e. information carried by informatons. The term “informaton” refers to the constituent element of g-information. It is a mass and energy less granular entity rushing through space at the speed of light and carrying information about the position and the velocity of its source, a mass-element of a material body.
References
[1] Acke, A. (2024) Newtons Law of Universal Gravitation Explained by the Theory of Informatons. https://doi.org/10.4236/jhepgc.2024.103056
[2] Acke, A. (2024) The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons. https://doi.org/10.4236/jhepgc.2024.103060
[3] Acke, A. (2024) The Maxwell-Heaviside Equations Explained by the Theory of Informatons. https://doi.org/10.4236/jhepgc.2024.103061