09 June 2021 3 2K Report

I have fit a random intercept factor model (Maydeu-Olivares & Coffman, 2006) in Mplus by the following syntax. One substantial factor where all item loadings are freely estimated and one random intercept factor where all item loadings are constrained to be 1. The random intercept factor variance is estimated.

Syntax:

ANALYSIS: ESTIMATOR = MLR;

ROTATION = GEOMIN(ORTHOGONAL);

MODEL: G BY a-a20 (*1); # G represents substantial factor

RI BY a-a@1; # RI represents random intercept/method factor

RI with G@0;

G@1;

But I got output as following. It looks like that the algorithm automatically takes G as the method factor because the factor loadings from this factor are much smaller than RI and so does its variance (if I delete G@1 to let the variance be estimated too). What I want the algorithm does is to take G as the substantial factor and estimate its factor loadings and take RI as the method factor and only estimate its variance. Does anybody know how to specify this in Mplus? Thanks a lot!

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

G BY

A1 0.445 0.118 3.771 0.000

A2 -0.085 0.137 -0.624 0.533

A3 0.148 0.111 1.334 0.182

A4 0.106 0.118 0.898 0.369

A5 0.184 0.162 1.137 0.255

A6 0.239 0.095 2.523 0.012

A7 0.444 0.125 3.556 0.000

A8 0.193 0.093 2.077 0.038

A9 -0.008 0.084 -0.092 0.926

A10 0.395 0.133 2.972 0.003

A11 0.094 0.166 0.563 0.574

A12 0.258 0.137 1.879 0.060

A13 0.318 0.117 2.717 0.007

A14 0.712 0.091 7.819 0.000

A15 0.316 0.104 3.027 0.002

A16 0.504 0.129 3.911 0.000

A17 0.290 0.104 2.786 0.005

A18 0.957 0.086 11.064 0.000

A19 0.485 0.164 2.951 0.003

A20 0.484 0.122 3.974 0.000

RI BY

A1 1.000 0.000 999.000 999.000

A2 1.000 0.000 999.000 999.000

A3 1.000 0.000 999.000 999.000

A4 1.000 0.000 999.000 999.000

A5 1.000 0.000 999.000 999.000

A6 1.000 0.000 999.000 999.000

A7 1.000 0.000 999.000 999.000

A8 1.000 0.000 999.000 999.000

A9 1.000 0.000 999.000 999.000

A10 1.000 0.000 999.000 999.000

A11 1.000 0.000 999.000 999.000

A12 1.000 0.000 999.000 999.000

A13 1.000 0.000 999.000 999.000

A14 1.000 0.000 999.000 999.000

A15 1.000 0.000 999.000 999.000

A16 1.000 0.000 999.000 999.000

A17 1.000 0.000 999.000 999.000

A18 1.000 0.000 999.000 999.000

A19 1.000 0.000 999.000 999.000

A20 1.000 0.000 999.000 999.000

RI WITH

G 0.000 0.000 999.000 999.000

Intercepts

A1 3.251 0.096 33.728 0.000

A2 3.246 0.098 32.988 0.000

A3 2.071 0.079 26.213 0.000

A4 1.976 0.083 23.804 0.000

A5 2.915 0.107 27.167 0.000

A6 1.773 0.069 25.742 0.000

A7 2.668 0.091 29.478 0.000

A8 2.431 0.077 31.708 0.000

A9 1.498 0.066 22.761 0.000

A10 2.545 0.092 27.682 0.000

A11 2.910 0.101 28.903 0.000

A12 2.720 0.098 27.665 0.000

A13 1.891 0.079 23.824 0.000

A14 2.346 0.083 28.217 0.000

A15 1.739 0.070 24.819 0.000

A16 3.057 0.091 33.654 0.000

A17 2.066 0.072 28.682 0.000

A18 2.445 0.089 27.498 0.000

A19 3.289 0.113 29.187 0.000

A20 2.654 0.098 27.014 0.000

Variances

G 1.000 0.000 999.000 999.000

RI 0.492 0.073 6.751 0.000

Reference: Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis. Psychological methods, 11(4), 344.

More Bo Wang's questions See All
Similar questions and discussions