I have fit a random intercept factor model (Maydeu-Olivares & Coffman, 2006) in Mplus by the following syntax. One substantial factor where all item loadings are freely estimated and one random intercept factor where all item loadings are constrained to be 1. The random intercept factor variance is estimated.
Syntax:
ANALYSIS: ESTIMATOR = MLR;
ROTATION = GEOMIN(ORTHOGONAL);
MODEL: G BY a-a20 (*1); # G represents substantial factor
RI BY a-a@1; # RI represents random intercept/method factor
RI with G@0;
G@1;
But I got output as following. It looks like that the algorithm automatically takes G as the method factor because the factor loadings from this factor are much smaller than RI and so does its variance (if I delete G@1 to let the variance be estimated too). What I want the algorithm does is to take G as the substantial factor and estimate its factor loadings and take RI as the method factor and only estimate its variance. Does anybody know how to specify this in Mplus? Thanks a lot!
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. P-Value
G BY
A1 0.445 0.118 3.771 0.000
A2 -0.085 0.137 -0.624 0.533
A3 0.148 0.111 1.334 0.182
A4 0.106 0.118 0.898 0.369
A5 0.184 0.162 1.137 0.255
A6 0.239 0.095 2.523 0.012
A7 0.444 0.125 3.556 0.000
A8 0.193 0.093 2.077 0.038
A9 -0.008 0.084 -0.092 0.926
A10 0.395 0.133 2.972 0.003
A11 0.094 0.166 0.563 0.574
A12 0.258 0.137 1.879 0.060
A13 0.318 0.117 2.717 0.007
A14 0.712 0.091 7.819 0.000
A15 0.316 0.104 3.027 0.002
A16 0.504 0.129 3.911 0.000
A17 0.290 0.104 2.786 0.005
A18 0.957 0.086 11.064 0.000
A19 0.485 0.164 2.951 0.003
A20 0.484 0.122 3.974 0.000
RI BY
A1 1.000 0.000 999.000 999.000
A2 1.000 0.000 999.000 999.000
A3 1.000 0.000 999.000 999.000
A4 1.000 0.000 999.000 999.000
A5 1.000 0.000 999.000 999.000
A6 1.000 0.000 999.000 999.000
A7 1.000 0.000 999.000 999.000
A8 1.000 0.000 999.000 999.000
A9 1.000 0.000 999.000 999.000
A10 1.000 0.000 999.000 999.000
A11 1.000 0.000 999.000 999.000
A12 1.000 0.000 999.000 999.000
A13 1.000 0.000 999.000 999.000
A14 1.000 0.000 999.000 999.000
A15 1.000 0.000 999.000 999.000
A16 1.000 0.000 999.000 999.000
A17 1.000 0.000 999.000 999.000
A18 1.000 0.000 999.000 999.000
A19 1.000 0.000 999.000 999.000
A20 1.000 0.000 999.000 999.000
RI WITH
G 0.000 0.000 999.000 999.000
Intercepts
A1 3.251 0.096 33.728 0.000
A2 3.246 0.098 32.988 0.000
A3 2.071 0.079 26.213 0.000
A4 1.976 0.083 23.804 0.000
A5 2.915 0.107 27.167 0.000
A6 1.773 0.069 25.742 0.000
A7 2.668 0.091 29.478 0.000
A8 2.431 0.077 31.708 0.000
A9 1.498 0.066 22.761 0.000
A10 2.545 0.092 27.682 0.000
A11 2.910 0.101 28.903 0.000
A12 2.720 0.098 27.665 0.000
A13 1.891 0.079 23.824 0.000
A14 2.346 0.083 28.217 0.000
A15 1.739 0.070 24.819 0.000
A16 3.057 0.091 33.654 0.000
A17 2.066 0.072 28.682 0.000
A18 2.445 0.089 27.498 0.000
A19 3.289 0.113 29.187 0.000
A20 2.654 0.098 27.014 0.000
Variances
G 1.000 0.000 999.000 999.000
RI 0.492 0.073 6.751 0.000
Reference: Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis. Psychological methods, 11(4), 344.