I have two equations for nonlinear piezoelectric energy harvester.

Mechanical domain:

π‘žΜˆ(𝑑)^2+πœπœ”π‘žΜ‡(𝑑) + πœ”^2π‘ž(𝑑)+XΞΈ ̈ - πœƒπ‘£(𝑑) + πœ•π‘ˆπ‘šβ„πœ•π‘ž(𝑑) = βˆ’π›€π‘§Μˆ(𝑑)

Electrical domain:

𝐢𝑝𝑣̇(𝑑) + 𝑣(𝑑)/𝑅 = πœƒπ‘žΜ‡(𝑑)

harmonic excitation terms

π‘ž(𝑑) = Qe^jπœ”t, z(t) = Ze^jπœ”t, 𝑣(𝑑) = Ve^jπœ”t, these terms and its derivative are substituted in the above two equations.

(-πœ”^2Q+πœπœ”π‘žjπœ” + πœ”^2Qβˆ’πœƒV) e^jπœ”t +XΞΈ ̈ + πœ•π‘ˆπ‘šβ„πœ•π‘ž(𝑑) = βˆ’π›€(-πœ”^2Z)e^jπœ”t

After substitution, the nonlinear term (πœ•π‘ˆπ‘šβ„πœ•π‘ž(𝑑) - nonlinear magnetic force) and centrifugal force term (XΞΈ ̈ ) are there. We cannot able to cancel the harmonic term e^jπœ”t because of the presence of the nonlinear term and centrifugal term.

(-πœ”^2Q+πœπœ”π‘žjπœ” + πœ”^2Qβˆ’πœƒV) e^jπœ”t = βˆ’π›€(-πœ”^2Z)e^jπœ”t

(-πœ”^2Q+πœπœ”π‘žjπœ” + πœ”^2Qβˆ’πœƒV) = βˆ’π›€(-πœ”^2Z) (1)

Without that nonlinear term, we can able to cancel the harmonic term e^jπœ”t. Then get one equation to solve.

Similarly,

(𝐢𝑝jπœ”V + V/𝑅)e^jπœ”t = πœƒjπœ”Qe^jπœ”t

(𝐢𝑝jπœ”V + V/𝑅) = πœƒjπœ”Q (2)

solving (1) and (2) we able to get Voltage expression and displacement expression.

Similarly, how to get voltage and displacement expression for the nonlinear piezoelectric energy harvester with that nonlinear term?

Tell me suggestions regarding this.

More Raja Velusamy's questions See All
Similar questions and discussions