09 April 2016 5 10K Report

How to compute the limit of a complex function below? Thanks.

For $b>a>0$, $x\in(-\infty,-a)$, $r>0$, $s\in\mathbb{R}$, and $i=\sqrt{-1}\,$, let

\begin{equation*}

f_{a,b;s}(x+ir)=

\begin{cases}

\ln\dfrac{(x+ir+b)^s-(x+ir+a)^s}s, & s\ne0;\\

\ln\ln\dfrac{x+ir+b}{x+ir+a}, & s=0.

\end{cases}

\end{equation*}

Compute the limit

\begin{equation*}

\lim_{r\to0^+}f_{a,b;s}(x+ir).

\end{equation*}

More Feng Qi's questions See All
Similar questions and discussions