How to compute the limit of a complex function below? Thanks.
For $b>a>0$, $x\in(-\infty,-a)$, $r>0$, $s\in\mathbb{R}$, and $i=\sqrt{-1}\,$, let
\begin{equation*}
f_{a,b;s}(x+ir)=
\begin{cases}
\ln\dfrac{(x+ir+b)^s-(x+ir+a)^s}s, & s\ne0;\\
\ln\ln\dfrac{x+ir+b}{x+ir+a}, & s=0.
\end{cases}
\end{equation*}
Compute the limit
\begin{equation*}
\lim_{r\to0^+}f_{a,b;s}(x+ir).
\end{equation*}