I have a fully developed pipe flow in with Inner radius (r) and outer radius (R), using pressure driven flow condition due to buoyancy,
- (1/rho) dP/dx = g
and velocity scaling u* = sqrt ( (-R/ (2 rho)) * (dP/dx)) [ friction velocity ], if Reynolds number is fixed ( Re = 600 ), along with r and R
we can get y+ value based on y values we give for cell size at both the walls,
But the question is when y+ calculated from this formula is y+ at the outer wall ( general pipe flow condition ) but how to get a y= for the inner annulus? ( concentric annular pipe flow ) ?
is there any analytical method to find this y+ or the only solution is to get us after simulation run when we have calculated friction velocities wall shear stresses at wall cell centers.
basically two different y+ to get analytically, in order to set up minimum cell size for my LES grid.