I am using a genetic algorithm to solve a multivariable optimization problem. The difficulty in exploring all the solutions is that the permissible set of each variable of the solution is of the form {0} U [a,b], where 0 < a < b (the magnitudes are around a=4 and b=15). "Solutions" that do not satisfy the constraints get a low fitness. So when the genetic explores the search space, it is difficult that it tries solutions with one variable at 0 (zero). I can try to enlarge the interval around 0 and to modify the fitness of variables close to zero. Does anybody know how to treat this kind of constraints? By the way I am using the DEAP genetic algorithms, more precisely this one: http://deap.gel.ulaval.ca/doc/default/examples/ga_onemax.html.