There are different proofs that the quantum nechanics (QM), more exactly the quantum formalism (that was NEVER contradicted by experiment), does not admit a substructure of particles following continuous trajectories. As two rigorous proofs I recommend my article

Article Hardy’s paradox made simple – what we infer from it?

and section 5, "Does a quantum objecthave a 'particle' ? ", in my article

Preprint Are particles possessing rest-mass, STRICTLY waves?

However, with all my efforts until now, I didn't succeed to prove a stronger statement: that the quantum object, which travels in our apparatus(es) does not possess a weird 'particle' which jumps accross disjoints regions, separated by a space in which the wave-function is null. This problem arises very strongly when we have to do with a wave-function consisting in two or more wave-packets traveling through isolated regions, e.g. : |ψ> = |a> + |b>.

In my last article mentioned above, I used as assumption the idea that a particle cannot do such a jump. i.e. cannot jump from the wave-packet |a> to the wave-packet |b>. The motivation is that an instant jump between two disjoint regions would mean, in a suitable frame of coordinates in movement with respect to the lab, that the particle disappears for a while from the universe. That would contradict the energy conservation, which has to be respected in any frame of coordinates.

Could there be a NO-GO here? Could it be that it is impossible to prove that there is no such weird particle? Could it be that it though exists?

More Sofia D. Wechsler's questions See All
Similar questions and discussions