Here's a detailed explanation of a **diode-connected rectifier with RF input voltage**, including its mechanism, circuit diagram, and labeled components:
---
### **1. Circuit Diagram (Labeled)**
```
RF Input
│
▼
┌───────┐
│ │
┌──┤ C1 ├──┐
│ │ │ │
│ └───────┘ │
│ │
▼ ▼
┌───────┐ ┌───────┐
│ D1 │ │ D2 │
│ (Schottky) │ (Schottky) │
└───┬───┘ └───┬───┘
│ │
├─────┐ ┌─────┤
│ │ │ │
▼ ▼ ▼ ▼
┌─────┐ ┌─────┐
│ C2 │ │ C3 │
│ │ │ │
└──┬──┘ └──┬──┘
│ │
├──────┤
│ │
▼ ▼
RL (Load)
│
▼
GND
```
#### **Labeled Components:**
- **RF Input**: High-frequency AC signal (e.g., from an antenna or oscillator).
- **C1**: Coupling capacitor (blocks DC, allows RF AC to pass).
- **D1, D2**: Schottky diodes (fast switching for RF rectification).
- **RL**: Load resistor (output power dissipation).
---
### **2. Mechanism of Operation**
#### **Step 1: RF Input Coupling**
- The **RF AC signal** (e.g., 2.4 GHz WiFi or 13.56 MHz RFID) passes through **C1**, which blocks any DC offset while allowing the high-frequency AC to reach the diodes.
#### **Step 2: Rectification by Diodes**
- **D1 and D2** form a **voltage doubler rectifier** (or single diode for half-wave rectification).
- **Positive Half-Cycle**: D1 conducts, charging C2 to the peak RF voltage.
- **Negative Half-Cycle**: D2 conducts, charging C3 to the peak RF voltage.
- Schottky diodes are preferred due to their **low forward voltage (~0.2V)** and **fast switching speed** (critical for RF frequencies).
#### **Step 3: Output Filtering**
- **C2 and C3** act as **storage capacitors**, smoothing the pulsating DC into a stable output voltage.
- The **load (RL)** draws power from the rectified DC voltage.
---
### **3. Key Considerations for RF Rectifiers**
- **Diode Selection**:
- **Schottky diodes** (e.g., HSMS-2850) are ideal for RF due to low junction capacitance (