31 December 2015 22 3K Report

Hello,

The Zr melt concentrations in the Laacher See Magma Reservoir have been estimated by Hans Schmincke and coworkers to be in the range of hundreds of ppm (ULST), O(1000ppm) (MLST) and around 3000 ppm (LST) for the lower H20-undersaturated, middle, and upper H20-saturated compositionally zoned magma chamber respectively.

I wonder how this may relate to Zircon saturation curves. Such curves have occasionnally been constrained experimentally for certain magma compositions (work by Mark Harrison, Bruce Watson and coworkers) but I am finding it difficult to translate how this may relate to the case of the Laacher See magmas.

Zircon solubility appears to be related to Zr concentration, Temperature and magma composition including SiO2 and TiO2 concentrations and the alkali/alumina index (eg. Harrison et al 2007) and one may also expect that it  also depends on the amount of dissolved volatiles (eg. water) in the melt.

I cannot find relevant papers which would enable to assess for what conditions Zircon saturation may be reached for the 3 end-member compositions of the zoned Laacher See magma chamber (or in a presumed basanite parent magma at LSE).

What intrigues me is that Zr contents seem to me to be very high at Laacher, yet Zircon occurrence seems to be "rare" and restricted to mostly very small zircon crystals in LST pumices and to some rare occurrences of sometimes  larger crystals (typically mm-sized xtals) in some cumulate nodules from LLST and MLST (eg. Schmitt 2006).

Is it that a large melt  H20 content suppresses Zircon crystallisation ?

Or that Zircon crystallization rates are too low in general in the LSE magma conditions  ?

I would be grateful for any insights into Zircon saturation and Zircon crystallization rates and what may control them at Laacher See (P: 115-200 MPa; H20: 2.5-5.7 vol% or so), or in basanite-tephrite magmas under crustal conditions.

I am also interested in any insights for Thorite crystallization in LSE magma conditions or in basanite-tephrite magmas under crustal conditions.

Thank you in advance for any suggestions or insights.

Happy New Year and Best Wishes,

Gerald

More G. G. J. Ernst's questions See All
Similar questions and discussions