Go (the surrounding game) is over 4000 year old strategy game between two players. It is played with Black and White tokens (called stones) on a square board with intersections drawn. The goal of the game is to surround opponent's territory (intersections on the board) using the stones. Also you can surround your opponent's stones to capture them and remove them from the board. The game ends when each intersection on the board has clearly decided to which player's territory it belongs, or both players consecutively pass a move. The player that surrounds more territory than his opponent wins the game. Each surrounded intersection counts as one point of territory and each captured stone reduces the opponent's territory by one point. The rules of Go are very simple and can be learned in just a few minutes, but to perfect your game it might take you a lifetime, as Go is very rich in strategy and the number of possible games outnumbers the number of atoms in the observable Universe.

Go being so complex, yet so simple, my question is, if computation (a Universal Turing Machine) can be simulated by it? If such a thing is possible, what about a Go game itself being simulated on such a machine?

The rules of Go:

http://gobase.org/studying/rules/?id=0&ln=uk

More Konrad Burnik's questions See All
Similar questions and discussions