As we may know, in the standard approach to the $q$-calculus there are two types of $q$-exponential functions $e_{q}=\sum_{n=0}^{\infty}\frac{z^{n}}{\left[ n\right]_{q}!}$ and $E_{q}(z)=\sum_{n=0}^{\infty}\frac{q^{\frac{1}{2}n\left(n-1\right) }z^{n}}{\left[ n\right]_{q}!}$. Based on these $q$-exponential functions, also, some new functions are defined whose most of their properties are similar to the exponential function in calculus. Despite having interesting properties similar to the exponential function in calculus, for none of them the above property holds. So, can we define a new $q$-exponential function with similar characteristics to the exponential function in calculus which satisfies the aforesaid property?Any help is appreciated.