Are there sets of three, or rather for any N>3 sets of N sur-jective uniformly continuous functions, for all N>3, where n denotes the number of function in the sets, such that each function in the set has the same domain [0,1] and the same range [0,1],such that these functions, in a given set, sum to one on all points in the domain [0,1]. ie \forallv\in[0,1] [\sum_{i=1}^{i=1n)fi(v)} =1 in [0,1] .Moro-ever, Are there arbitrarily many such functions for all n>=3.
By non trivial, I mean, -non linear, (and presumably not quadratic) functions which just so happen to be that that their sum give value 1, in [0,1] or perhaps for any domain, and not by way of the algebraic sum cancelling out to a constant 1 as in the case of x, 1-x (ie error correcting) .Presumably due to the nature of the derivatives
That is, so that the functions, would sum to one, regardless of the domain [0,1] or least for if the domain [0,1] is held fixed, and the functions are weighted; without it being a mere artefact that the algebraic sum to cancels out to give a constant,1,for any x; that is error-correcting functions. That is three (or n>3) functions all of which have a maximum range value of one, miniimum range value of zero, and which sum to one for all points in the domain [0,1]; and which are surjective and uniformly continuous, ie for every value in the range ri\in [0,1], these functions have some (at least one) value, ci in the domain [0,1] such that f(ci)=ri such that takes on that .
Where these maximum values and min values for all fi coincide (the same element of the domain for which fi corresponds to 1, is such that other n-1/2 functions correspond to zero etc); where obviously these three/n max points such that fi(c)=1,(one, and only one for each function, fi,i1=3 such functions. So there are three distinct domain points in [0,1] corresponding to a n/3-tuple of function values,f1,f2,f3(c)= ,,f1,f2,f3(c1)=f1,f2,f3(c2)=,; corresponding the three distinct elements/points in the domain [0,1] , c\neqc1\neqc2, c,c1,c2,\in [0,1] . Where the first function is at its maximum value here 1, and the other two are their minimum, zero at c, the second is at its maximum at c1 (1), and first and third are a their mimimum (zero here) at c1 etc
And are continuous (no gaps, and uniformly continuous, ie no spikes).
As one could not make use of these such functions, if one wanted them to be weighted otherwise; if said functions have sums which either (A) as just cancel out to be constant, or two (are such that it their sums are do not cancel out to a constant, but just so happen to line up because the domain is [0,1]
Likwise, the functions a similar form; so that one does not want, one having two maximums whilst the other two for example have one maxima, and two minima. Perhaps Berstein polynomials could be so weighted, but I do not know; the linear forms cancel out but their weighted bezauir forms seem to be a little unstable from what I have read.