According to the Center for Climate and Energy Solutions, Enhanced Geothermal Systems (EGS) remains in the research and development stage. Experimentation with EGS first began in the 1970s with a series of pilot projects at Fenton Hill, New Mexico. While the projects did not operate on a commercial scale, they did demonstrate the feasibility of the geologic engineering and drilling techniques needed to artificially create hydrothermal reservoirs. Since then, experimental EGS plants and pilot projects have been undertaken around the world. Realizing the full potential of EGS will take some time, and the International Energy Agency (IEA) believes that substantially higher research, development, and demonstration efforts are needed to ensure EGS becomes commercially viable by 2030.
In the United States, there has been growing interest in EGS. In 2009, the American Recovery and Reinvestment Act included $80 million for research and development of EGS technologies. The U.S. Department of Energy’s (DOE) Geothermal Technologies Program oversees on-going research and development related to EGS with the goal of improving the performance and lowering the cost of EGS technologies. The Geothermal Technologies Program partners with national laboratories, universities, and the private sector on EGS component technology research and development projects and EGS system demonstration projects. Two prominent EGS-related research projects are wastewater injection at The Geysers in California (the oldest geothermal field in the United States and largest geothermal venture in the world) and Desert Peak in Nevada, where EGS capacity will be added to an existing geothermal field. Finally, the Bureau of Land Management leases land in eleven Western states for continued geothermal resource development.
The European Union has long been involved in the efforts to research and develop enhanced geothermal systems technologies. France and Germany have operational EGS demonstration projects (1.5 to 2.5 MW), while Iceland and Switzerland are members of the International Partnership for Geothermal Technology (IPGT). The United States and Australia are also members of the IPGT, which is working to identify effective methodologies and practices for EGS development.
Obstacles to Further Development or Deployment of EGS
· Need for Technology Research, Development, and Demonstration (RD&D)
· A lack of RD&D constrains the deployment of EGS power plants. Most technologies used in EGS, such as drilling and geologic imagery techniques, are not yet adapted for specific use in EGS development.
· High-Risk Exploration Phase. The exploratory phases of a geothermal project are marked by not only high capital costs but also a 75 % chance of failure, when high fluid temperatures and flow rates are not located. The combination of high risk and high capital costs can make financing geothermal projects difficult and expensive.
· Knowledge of Geothermal Geology. The ability to artificially create geothermal reservoirs consistently is greatly limited due to a lack of understanding of how geothermal reservoirs occur in nature. Researching the geological characteristics of natural geothermal resources is essential to adapting stimulation and drilling techniques in such a way that drives down the costs of EGS development.
· Geographic Distribution and Transmission. Despite the siting flexibility of EGS technologies, the most promising EGS sites often occur great distances from regions of large electricity consumption, or load centers. The need to install adequate transmission capacity can deter investment in geothermal projects.
You could also try this report which may help you, particularly Appendix C Section C2 which focuses on those drilling technologies that have been shown to deliver better performances than standard conventional drilling methods.