In quasicrystal, a different set of tilling can form the quasicrystal. However, most of the mathematical theory is trying to explain the quasicrystal tilling from one starting point and not from a different setpoint ( 2 or 3 points with some specific distance) to explain the tilling pattern, which these set points can expand at the same time. This will bring a question of what is the best tilling, packing density, the maximum area of QC tilling, ...

My question is how we can explain this by the relation between the degree of packing and tilling pattern?

Regards,

More Hadi Parsamehr's questions See All
Similar questions and discussions