The importance of √2 and √3, ubiquitous in the 3D and 2D probability domains of quantum mechanics, is often misunderstood and rarely discussed.

The importance of √2 has already been explained in the Q&A section of ResearchGate [May 25]; we now briefly present the importance of √3.

The transition matrix B of classical physics is given by:

0 1/4   0 1/4 1/4   0   0   0

1/4   0 1/4   0   0 1/4   0   0

0 1/4   0 1/4   0   0 1/4   0

1/4   0 1/4   0   0   0   0 1/4

1/4   0   0   0   0 1/4   0 1/4

0 1/4   0   0 1/4   0 1/4   0

0   0 1/4   0   0 1/4   0 1/4

0   0   0 1/4 1/4   0 1/4   0

And the transition matrix Q of quantum physics is given by:

Q = √B (proposed by the author), then Q =

((1+i)*3^0.5+(3+3*i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16 ((1-i)*3^0.5-(3-3*i))/16   ((1+i)*3^0.5-(1+i))/16

((1-i)*3^0.5+(1-i))/16 ((1+i)*3^0.5+(3+3*i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16 ((1-i)*3^0.5-(3-3*i))/16

((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16 ((1+i)*3^0.5+(3+3*i))/16   ((1-i)*3^0.5+(1-i))/16 ((1-i)*3^0.5-(3-3*i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16

((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16 ((1+i)*3^0.5+(3+3*i))/16   ((1+i)*3^0.5-(1+i))/16 ((1-i)*3^0.5-(3-3*i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16

((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16 ((1-i)*3^0.5-(3-3*i))/16   ((1+i)*3^0.5-(1+i))/16 ((1+i)*3^0.5+(3+3*i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16

((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16 ((1-i)*3^0.5-(3-3*i))/16   ((1-i)*3^0.5+(1-i))/16 ((1+i)*3^0.5+(3+3*i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16

((1-i)*3^0.5-(3-3*i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16 ((1+i)*3^0.5+(3+3*i))/16   ((1-i)*3^0.5+(1-i))/16

((1+i)*3^0.5-(1+i))/16 ((1-i)*3^0.5-(3-3*i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16   ((1-i)*3^0.5+(1-i))/16   ((1+i)*3^0.5-(1+i))/16   ((1-i)*3^0.5+(1-i))/16 ((1+i)*3^0.5+(3+3*i))/16

Multiplying the matrix Q by the initial state vector (1 1 1 1 1 1 )^T, we obtain:

(0.866025 0.866025 0.866025 0.866025  0.866025 0.866025     0.866025 0.866025)^T

Note that √3 /2 = 0.866025.

Remarkable precision at 8 digits.

More Ismail Abbas M. Abbas's questions See All
Similar questions and discussions