It´s normally atributed to photoelectrochemistry but most of the examples are with semiconductors, where the required photon energy is smaller than a metal. Also when a electrode potential is applied it will decrease the required energy for the generation of photocurrents.
My setup doesn´t have any additional electrode potential. My electrodes are submerged in electrolyte (100mM NaCl) and are illuminated perpendicularly to the surface (625nm @ 6mW/mm^2).
I´m not using semiconductor electrodes so there shouldn´t be current in non UV wavelengths. I´m using different MEA (Au, TiN) but I´m still observing this current once the electrodes are illluminated, also if I illuminate just the tracks I see a voltage.
In the following article[Article Dawn of the evolution of photoelectrochemistry
] they explain the required energy if the difference between the Work function of the metal and the solvation energy of the electrons. The problem is that they don´t give any proof for this hypothesis.