01 January 1970 2 3K Report

Press release, 22 October 2024

Understanding the physics of cancer, preventing metastases: Leopoldina honours the physician Bahriye Aktas and the biophysicists Jochen Guck and Josef Käs with the Greve Prize

Dealing with metastases is one of the major challenges of cancer therapy. More than 90 percent of deaths caused by cancer are linked to metastases. Understanding the conditions that cause cancer metastases and how these move through the body is key to developing new approaches to cancer treatment. Biophysics can provide valuable insights, as cancer is also subject to the laws of physics. In honour of their groundbreaking insights into the movement of tumour cells, the physician Professor Dr Bahriye Aktas, and the biophysicists Professor Dr Jochen Guck, and Professor Dr Josef Käs are receiving the 2024 Greve Prize from the German National Academy of Sciences Leopoldina. The award, endowed with 250,000 euros, is donated by the Helmut and Hannelore Greve Foundation for Science, Development and Culture.

The biophysicist Professor Dr Josef Käs from the University of Leipzig/Germany and Professor Dr Jochen Guck from the Max Planck Institute for the Physics of Light in Erlangen/Germany are leading global scientists in the physics of cancer. Their research, some of which they have conducted jointly, investigates the physical properties of cells when they interact with surrounding tissue. They have managed to demonstrate how tumour cells actively change from solid and stiff to a fluid and soft condition in order to move between the dense tissue of the human body and form metastases. This discovery has led to a paradigmatic shift in how cancer cells are viewed and motivated collaboration with the physician Professor Dr Bahriye Aktas from the University of Leipzig Medical Center. Aktas has made it possible to study human tumour samples directly after operating and thus also live-cell microscopy of the active deformation of cancer cells. Building on the work of their predecessor Professor Dr Michael Höckel, this raises the question of what limits cancer cells in the body experience. “Bahriye Aktas, Jochen Guck, and Josef Käs provide an impressive example of how interdisciplinary basic research can significantly deepen the understanding of cancerous diseases,” says Leopoldina President Professor (ETHZ) Dr Gerald Haug. “Studying the behaviour of tumour cells from the perspective of physics and linking it to direct insights gained from medical institutions has the potential to develop completely new means of treating cancer.”

The potential for cancer treatment is already apparent with respect to breast cancer. Whether the cancer has metastasised or not is key in determining the success of therapies. To date, however, it has not been possible to accurately predict when a tumour forms metastases. Käs and Aktas, working together with Professor Dr Axel Niendorf (Hamburg/Germany), managed to identify markers that, in combination with existing criteria, are significantly better at indicating a tumour’s potential to metastasise. They have done so using biophysical concepts, the central idea of which – that metastasising cancer cells must be softer – Jochen Guck played an important role in developing. Cancer cells in primary tumours are, at the local level, very solid and densely packed. In order to release themselves from the original tumour and move through the human body, cancer cells must soften, allowing the cancer cell aggregate to become fluid. In the study carried out by Käs and Aktas together with Axel Niendorf, the scientists identified the histological characteristics of the cancer cells that become fluid: they were longer and had deformed cell nuclei, allowing them to “squeeze” through neighbouring tissue. Their study of more than 1,000 breast cancer patients offers a strong indication that these deformed cell and nuclei forms can be used as a reliable marker for a cancer’s aggressiveness, and to predict a tumour’s potential to metastasise. This could permit breast cancer treatments to be more individually tailored to patients. In Erlangen, parallel to the activities in Leipzig, Guck developed a high-throughput method to measure the deformability of cells (real-time deformability cytometry, RT-DC). This method is particularly suited to finding substances that can change cancer cell mechanics to prevent metastases.

Bahriye Aktas (born in 1975) is Professor of Gynaecology at the University of Leipzig and Director of the Department of Gynaecology at the Leipzig Medical Center. Aktas studied medicine at the Justus Liebig University Gießen/Germany. She completed her medical training as a gynaecologist and obstetrician at the University Hospital Essen/Germany, obtained her habilitation there in 2013, and was appointed Associate Professor in 2017. That year she switched to the University of Leipzig. As a gynaecologist, her focus is on minimally invasive and robot-assisted surgery, which is used for gentler and precise operations with improved chances of healing, and she also has a particular interest in surgery for cancer treatment. She and her predecessor have helped to globally establish new operation methods that take into account how a tumour spreads.

https://www.leopoldina.org/presse-1/pressemitteilungen/pressemitteilung/press/3091/

More Josef A Käs's questions See All
Similar questions and discussions