Dear All,
Coagulating (aggregating, coalescing) systems surround us. Gravitational accretion of matter, blood coagualtion, traffic jams, food processing, cloud formation - these are all examples of coagulation and we use the effects of these processes every day.
From a statistical physics point of view, to have full information on aggregating system, we shall have information on its cluster size distribution (number of clusters of given size) for any moment in time. However, surprisingly, having such information for most of the (real) aggregating systems is very hard.
An example of the aggregating system for which observing (counting) cluster size distribution is feasible is the so-called electrorheological fluid (see https://www.youtube.com/watch?v=ybyeMw1b0L4 ). Here, we can simply observe clusters under the microscope and count the statistics for subsequent points in time.
However, simple observing and counting fails for other real systems, for instance:
I am curious what do you think of the above issues.
Do you know any other systems where cluster size distributions are easily observed?
Best regards,
Michal