I’m refining my OLS regression model before spatial analysis, but I’m having a hard time getting my Jarque-Bera statistic to be above 0.01. I’ve transformed the variables using natural logs when appropriate and only kept the variables that perform well in the model. Can you recommend any other way to help this statistic become non-significant (aside from stripping most variables out of the model)?
Example output (sorry about the size issue...):
Running script OrdinaryLeastSquares...
Summary of OLS Results
Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF [1]
Intercept -4.591413 0.277779 -16.529028 0.000000* 0.292723 -15.685185 0.000000* --------
IMPUTED_2007.FUNC 0.011823 0.003605 3.279831 0.001069* 0.003688 3.205543 0.001380* 2.072520
IMPUTED_2007.PSERVER 0.010306 0.003230 3.191250 0.001449* 0.003401 3.030011 0.002481* 2.026601
IMPUTED_2007.ALL_AVGSIZ -0.426755 0.032691 -13.054093 0.000000* 0.034610 -12.330403 0.000000* 1.219782
IMPUTED_2007.MALEP 0.147268 0.061111 2.409832 0.016014* 0.065360 2.253175 0.024315* 1.022368
IMPUTED_2007.FAC1_1 0.352825 0.012589 28.026491 0.000000* 0.013993 25.214714 0.000000* 1.593432
IMPUTED_2007.LN_SOLVENT -0.123617 0.032297 -3.827453 0.000143* 0.032640 -3.787269 0.000167* 1.535946
SHEET1$.CROWDING 1.414136 0.540345 2.617100 0.008913* 0.545406 2.592811 0.009565* 1.203746
SHEET1$.PLP_ARC 0.317365 0.022491 14.110940 0.000000* 0.023395 13.565666 0.000000* 1.416987
OLS Diagnostics
Input Features: Imputed_2007 Dependent Variable: INTERACTIONS_2$.LN_EBS_CHI
Number of Observations: 2608 Akaike's Information Criterion (AICc) [2]: 3894.080949
Multiple R-Squared [2]: 0.476858 Adjusted R-Squared [2]: 0.475247
Joint F-Statistic [3]: 296.131844 Prob(>F), (8,2599) degrees of freedom: 0.000000*
Joint Wald Statistic [4]: 2021.550521 Prob(>chi-squared), (8) degrees of freedom: 0.000000*
Koenker (BP) Statistic [5]: 24.766749 Prob(>chi-squared), (8) degrees of freedom: 0.001702*
Jarque-Bera Statistic [6]: 13.346125 Prob(>chi-squared), (2) degrees of freedom: 0.001265*