I was working on 2 papers on statistics when I recalled a study I’d read some time ago: “On ‘Rethinking Rigor in Calculus...,’ or Why We Don't Do Calculus on the Rational Numbers’”. The answer is obviously trivial, and the paper was really in response to another suggesting that we eliminate certain theorems and their proofs from elementary collegiate calculus courses. But I started to wonder (initially just as a thought exercise) whether one could “do calculus” on the rationals and if so could the benefits outweigh the restrictions? Measure theory already allows us to construct countably infinite sample spaces. However, many researchers who regularly use statistics haven’t even taken undergraduate probability courses, let alone courses on or that include rigorous probability. Also, even students like engineers who take several calculus courses frequently don’t really understand the real number line because they’ve never taken a course in real analysis.
The rationals are the only set we learn about early on that have so many of the properties the reals do, and in particular that of infinite density. So, for example, textbook examples of why integration isn’t appropriate for pdfs of countably infinite sets typically use examples like the binomial or Bernoulli distributions, but such examples are clearly discrete. Other objections to defining the rationals to be continuous include:
1) The irrational numbers were discovered over 2,000 years ago and the attempts to make calculus rigorous since have (almost) always taken as desirable the inclusion of numbers like pi or sqrt(2). Yet we know from measure theory that the line between distinct and continuous can be fuzzy and that we can construct abstract probability spaces that handle both countable and uncountable sets.
2) We already have a perfectly good way to deal with countably infinite sets using measure theory (not to mention both discrete calculus and discretized calculus). But the majority of those who regularly use statistics and therefore probability aren’t familiar with measure theory.
The third and most important reason is actually the question I’m asking: nobody has bothered to rigorously define the rationals to be continuous to allow a more limited application of differential and integral calculi because there are so many applications which require the reals and (as noted) we already have superior ways for dealing with any arbitrary set.
Yet most of the reasons we can’t e.g., integrate over the rationals in the interval [0,1] have to do with the intuitive notion that it contains “gaps” where we know irrational numbers exist even though the rationals are infinitely dense. It is, in fact, possible to construct functions that are continuous on the rationals and discontinuous on the reals. Moreover, we frequently use statistical methods that assume continuity even though the outcomes can’t ever be irrational-valued. Further, the Riemann integral is defined in elementary calculus and often elsewhere as an integer-valued and thus a countable set of summed "terms" (i.e., a function that is Riemann integrable over the interval [a,b] is integrated by a summation from i=1 to infinity of f(x*I)Δx, but whatever values the function may take, by definition the terms/partitions are ordered by integer multiples of i). As for the gaps, work since Cantor in particular (e.g., the Cantor set) have demonstrated how the rationals “fill” the entire unit interval such that one can e.g., recursively remove infinitely many thirds from it equal to 1 yet be left with infinitely many remaining numbers. In addition to objections mostly from philosophers that even the reals are continuous, we know the real number line has "gaps" in some sense anyway; how many "gaps" depends on whether or not one thinks that in addition to sqrt(-1) the number line should include hyperreals or other extensions of R1. Finally, in practice (or at least application) we never deal with real numbers anyway (we can only approximate their values).
Another potential use is educational: students who take calculus (including multivariable calculus and differential equations) never gain an appreciable understanding of the reals because they never take courses in which these are constructed. Initial use of derivatives and integrals defined on the rationals and then the reals would at least make clear that there are extremely nuanced, conceptually difficult properties of the reals even if these were never elucidated.
However, I’ve been sick recently and my head has been in a perpetual fog from cold medicines, so the time I have available to answer my own question is temporarily too short. I start thinking about e.g., the relevance of the differences between uncountable and countable sets, compact spaces and topological considerations, or that were we to assume there are no “gaps” where real numbers would be we'd encounter issues with e.g., least upper bounds, but I can't think clearly and I get nowhere: the medication induced fog won't clear. So I am trying to take the lazy, cowardly way out and ask somebody else to do my thinking for me rather than wait until I am not taking cough suppressants and similar meds.