We assume that neither E. Schrödinger nor N. Bohr understood physics and that the classical Schrödinger equation, interpreted according to Bohr/Copenhagen in 1927, is a disaster.
A mathematician who does not master the universal laws of physics is not qualified to conduct mathematical research.
The author proposes another new mathematics such that the Schrödinger partial differential equation (PDE) is best described by its complex transition matrix/tensor Q, as follows:
Q=√B
where B is the transition matrix well known in the theory of Cairo techniques.
For example, the transfer matrix D(N)=Q+Q ^2+Q^3 ..etc for 8 equidistant nodes in a 3D cube is expressed as follows:
D(N)=
((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840
((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840
((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840
((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840
((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840
((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840
((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840
((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5-(63-45*i)*6^0.5+32)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5-(21+15*i)*6^0.5+64)/840 ((105-35*i)*2^0.5+(21-15*i)*6^0.5+176)/840 ((105+35*i)*2^0.5+(63+45*i)*6^0.5+928)/840
By multiplying D(N) by the vector [11111111], the Rayleigh constant can easily be calculated as 3.414214, and then π = 3.14159.
----
Note: If you are unfamiliar with the universal laws of physics, please stop reading.
This question is not for you.