Some physicists say”everything is quantum”? Why would they say so? And what is the meaning of this sentence? No one doubts that quantum theory is successful. But from this statement it does not follow that everything is quantum! Therefore these physicists are making logically unjustified conclusions. Do they use quantum logic to ascertain conclusions that are only probable?
The essence of the quantum formalism is algebra. A generic algebra, for instance a von Neumann algebra, has a nontrivial center – consisting of those elements that commute with other elements. The elements of this center correspond to what we may call „classical observables”. Algebras with trivial center are special; they are called „factors”. Why should we assume that algebra is governing our world, if there is such has a nontrivial center? What is the basis of such a bold assumption?
It is true that every algebra can be decomposed into factors. It is true that every algebra can be factored by its center. But it is not true that such a quotient contains all the information contained in the original algebra. Some information is lost. Why should we lose information?
Or, in easier terms: wave functions in quantum theory depend on parameters: space, time, and other numbers. These parameters are classical, not quantum. Of course operators of multiplication by functions depending on these parameters belong to the quantum formalism, but not the parameters themselves. Can a theory be constructed that has no classical parameters at all? No space, no time, no structure, no „nothing?” In such a theory nothing would ever be deduced.
If so, why not accept that once the dream of „everything is quantum” is contradictory and self-destructive, why not to start with a more reasonable assumption that not everything is quantum and draw the consequences of such an assumption? If not everything is quantum, the what exactly is it that is not quantum? Space? Time? Group? Homogeneous space? Some geometry that organizes the algebra structure?