INFINITE-ETERNAL MULTIVERSE

Raphael Neelamkavil

Ph. D. (Causality in Quantum Physics), Dr. phil. (Causality in Cosmology)

[email protected]

We cannot see, or predict the existence or not of limits of the edges of the universe. But, merely due to our inability to see or predict, the universe need not be infinite in content and extent. Similarly, nor should it be taken as finite in content and extent. Any number of insistent avowals on experimental proofs become useless here.

Some have attempted to determine the content of the universe by first determining the geometry of the universe by depending on their determination of isotropy and anisotropy at any local region or layer of the universe. Then they formulate the separate geometry of the finite or infinite spatial or temporal content of the universe, in order thus to indicate the matter-energy content (as finite or infinite) of the whole the universe...!

Does the absence of empirical evidence mean that we should not speak of the rational cases possible in the maximal, medial, and minimal cases of extent of time and space, and of content of matter-energy in the universe? I do not think so. Why not we treat each possible case and sub-case separately and come to conclusions not merely about the geometry, but also of the rationally most acceptable amount of content of the universe?

Many people in the physics and astrophysics of the whole cosmos often tend to insist that the mathematics used to derive conclusions from the particular / local portions of the universe to the total / overall cosmos will help to conclude physically to whatever the mathematics suggests. This is because they tend to equivocate the physics to the mathematics.

If in a physical system within a controlled environment on earth tends to reverse all the physical dispersion of matter (where no real tab is possible on the loss of a minute energy from the system), then they tend to conclude on a cosmic scale theory on the energy loss at the fringes of each local universe or portion of it that all energy propagated will return at some point. This goes without saying, they tend to conclude so.

If there is an internal gravitational reason that makes the loss of energy at the fringes from the first moment of expansion (due to whatever amount of expansion, because there is no total absence of expansion and contraction in any physical system!), then it is rationally and astrophysical-cosmologically clear that some energy will have left the system at least at the speed of light at the first moment of the process of expansion considered and it will continue at an intensive or less intensive mode.

Then many cosmologists tend to insist that our finite-content big bang universe (which either is just the totality of the cosmos that ever has existed, or is only our finite-content portion of the infinite-content cosmos) has only two options: (1) EITHER it will go on expanding eternally and become rarefied forever (in which case it could already have been so if the universe had no origin), (2) OR it will oscillate between expansion and contraction (which is the cyclic model, which too incurs a non-eternal process of rarefaction of the finite content by reason of the fringe-loss of energy).

In the latter case, all the mathematics-is-omnipotent sort of physicists just calculate the implications of their theory by depending merely on the strength of the mathematics. They say first that in any system most of the matter-energy return in any system, because even in the case of entropy of a given system the loss of energy – in case it is the case – is not great with respect to the system.

This is very inaccurate and in any case gives rise to the prejudice that the negligible loss is zero loss for all purposes. We do not know for sure whether every energy wavicle that left the system returns. It is impossible to measure the loss so exactly. The “sufficiently accurate empirical measure” is no guarantee for a total correctness. They then say that, whether there is a big bang universe or not, every system contains and preserves all the energy that it has, merely because of their presumption that matter and energy are interconvertible, and hence all the energy that left at the outskirts should return.

Lots of geometrical restrictions are then rendered for the fringe-loss energy to return: that the fringes are not infinite, any universe has within itself all that its space-time has, etc. In none of these do they try to really rethink the foundations of their merely mathematical concept of spacetime with respect to the fringes of local universes from the start to the finish of any amount of expansion and contraction that any cosmic body should have. Consequently, they consider the local universe as a complete system – by their unresearched presumption – and presuppose that cosmic bodies within that universe can lose energy forever, which of course will be within the system of this universe. Does anyone sense an inconsistency here?

As we all know, the second law of thermodynamics is formulated with almost closed terrestrial systems in mind, and no methods exist to perfectly measure all the minute losses of energy from within the system. If gravitation alone is involved in bringing back all the lost energy of the finite-content local universe, then the second law need not have applicability there at all!

Merely because we have formulated the physics in such a way that the second law of thermodynamics does not apply also to the entropy of the outermost fringes of the local universe, we cannot insist that the energy lost at the fringes will automatically return without the agency of a later gravitational propagation. One should naturally use the wisdom that no gravitational propagation issued before or after the start of the expansion can run slower or faster than the lost (gravitational and/or non-gravitational) energy and bring the lost energy back to the centre for recycling for use in another phase of the cycle of expansion and contraction.

In order to avoid this state of affairs, many might bring up geometries and cosmological theories requiring no big bang or big crunch. But who can insist that the local universe never has any amount of expansion and contraction? Even if it does not have expansion and contraction, energy at the fringes will be propagated off. There is no special wall there (except the geometrical walls created by a few cosmologists) to block the outward-bound propagations forever!

In short, the big bang universe cannot go on eternally in existence as a conglomeration with the same amount of matter-energy. If it had to be insulated from all other possible universes outside, it was certainly not in existence from the past eternity proper to it, because the fringe-loss of energy, however minute, could have exhausted such an eternally existent finite-content universe an eternity ago. It would have to evaporate all or most of its content, and hence, if it had existed from the past eternity as the sole physical cosmos, it should already have exhausted itself.

Why is it that this our finite-content big bang (or slightly expanding) universe did not already conclude at an earlier point of time by getting fully evaporated into the outer realms, if it was not created at all and if it really existed from eternity? Hence, IF MERELY THIS FINITE-CONTENT UNIVERSE EXISTS, some sort of creation of this finite-content universe should have been the case. Hence, let us leave this possibility – for otherwise scientistic scientists would begin attacking me.

Let’s ask: Why should only this one universe exist? The following are the only two possible sub-cases:

(1) Probably there existed, from the past eternity of each universe, an infinite number of universes bigger or smaller. These need not have an origin, since the small amount of energy that each universe loses at each of its expansion- and contraction phases will end up at some finite future in other similar universes; and perhaps this is enough for an eternal co-existence of each of them from the past eternity proper of all parts of each such universe as parts of one or many other universes within the infinite-content universe.

(2) If the one universe was the result of an instant creation or continuous creation of various parts, there should be other infinite number of universes too – because, the Source should not be this same universe or other universes, and the Source should then have the eternal ability of performing continuous creation. Moreover, the other universes in the cosmos cannot create themselves, and this big bang universe of ours cannot create itself, except when they have infinite activity within and the infinite stability proper to infinite activity.

Any number of arguments articulating a quantum vacuum creating new universes from themselves will naturally involve creation only from already existent matter-energy and/or universes. Existing matter-energy – however empty or full the quantum vacuum as the supposed agent of creation is – cannot create fresh matter-energy except from within existing matter-energy in each universe. But this is finite in amount, and cannot go on by fresh creation.

Transfer and re-formulation of matter-energy is not creation. It is just a new mixing with other matter-energy at finite distances. This activity is already included in the processes of the universe, by including which the finite-content universe/s exhaust themselves into their own outer spaces within a finite time, not permitting further prospects of new creation.

In the case of eternal and continuous creation from a Source, it must be admitted that the universe is infinite in content, that is, contains an infinite number of finite-content universes. This is because the Source cannot be this infinite-content cosmos or be part of it, and must exist continuously in the act of infinite and eternal creation.

I do not insist that the above is the case. I have presented one possible case given by any sort of open reasoning. I have elaborated all these and similar other cases of cosmogenesis in the 647 pages of my book: Gravitational Coalescence Paradox and Cosmogenetic Causality in Quantum Astrophysical Cosmology, 2018, Berlin. It is the result of more than 35 years of reading, research, and cogitations – from my very school days.

I have published a short but differently argued version of it in less than 100 pages, presenting the logic of these reasonings in a more simplified manner, so that an ordinary educated person interested in cosmology can grasp the basic lines of the above book easily. It is titled: Essential Cosmology and Philosophy for All, KDP Amazon, 2022. This book is available as Kindle and Printed, for a few Euros or Dollars.

I suggest these books because I cannot write more than a few pages here….

Bibliography

(1) Gravitational Coalescence Paradox and Cosmogenetic Causality in Quantum Astrophysical Cosmology, 647 pp., Berlin, 2018.

(2) Physics without Metaphysics? Categories of Second Generation Scientific Ontology, 386 pp., Frankfurt, 2015.

(3) Causal Ubiquity in Quantum Physics: A Superluminal and Local-Causal Physical Ontology, 361 pp., Frankfurt, 2014.

(4) Essential Cosmology and Philosophy for All: Gravitational Coalescence Cosmology, 92 pp., KDP Amazon, 2022, 2nd Edition.

(5) Essenzielle Kosmologie und Philosophie für alle: Gravitational-Koaleszenz-Kosmologie, 104 pp., KDP Amazon, 2022, 1st Edition.

More Raphael Neelamkavil's questions See All
Similar questions and discussions