The math tells us that the acceleration, depend on the frequency, in the unit of time, X the amplitude of oscillation, and the value of the acceleration X the kilograms of the mass gives us the inertia, and the intersecting base which have the same value. If we multiply the inertia by the height, it gives us the overturning moment of the lever arm at height If the moment of the lever arm in height is divided by the width of the wall which is the second lever arm in width, the overturning moments are reduced according to the width of the second lever arm. So the height along with the acceleration and the mass increases the moments that the wall lowers, while the width of the second lever arm decreases them. So if we want to construct a building which lowers smaller moments we have to do the following. 1) We can't do much about acceleration because it depends on the earthquake. However, we can install horizontal seismic insulation in the construction which reduces the acceleration. But this costs 2) For the mass, we can reduce the weight by using in the masonry instead of bricks and cement blocks the Alfa Block (Aerated concrete) which, apart from being light, thus reducing the weight of the reinforcement and the cost, they also have a lower inertia and overturning moment . In multi-storey and general high-beam constructions, it is a good choice for cheaper, more insulated and anti-seismic constructions. They are not suitable for the construction of two or even fewer floors. 3) For the overturning moment, and the reception of the cutting base, the structure that has a small height and a large width of walls is better. Ideal such constructions are continuous construction buildings made entirely of reinforced concrete (without masonry) or heavy-duty prefabricated buildings. The latter are even cheaper than conventional houses because they are manufactured. But they have a problem, they are dynamic but they are also rigid. Flexible elastic buildings made of columns combined with walls have both dynamics and elasticity and are less vulnerable to earthquake. Usually the columns take the static loads and the walls and the seismic loads. For this reason civil engineers prefer them for the best seismic design. Here comes a question. What can we do to reduce the overturning moment, the bending moment, the moment at the nodes and increase the resistance to the intersecting base, while reducing the construction cost by increasing its seismic resistance? The answer is simple. We buy heavy-duty prefabricated houses, which we compact their sides with the ground, with the mechanism of the patent, and apply prestressing to their cross-sections. With this design method 1) We drop the cost by 30% from conventional houses. 2) We increase the height of prefabricated structures by building skyscrapers (today only ground floor and one floor are allowed) 3) We reduce the number of anchors and therefore the cost of compaction. 4) We increase the speed of completion of the project